Hort. Sci. (Prague), 2024, 51(3):169-188 | DOI: 10.17221/85/2023-HORTSCI
Use of near-infrared spectrometry in temperate fruit: A reviewReview
- 1 Department of Genetics and Breeding, Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy, Czech Republic
Near-Infrared (NIR) spectrometry has emerged as a promising tool for the non-destructive and rapid analysis of temperate fruit quality, maturity, and other parameters. The technique provides a wealth of information, including details of chemical composition, without damaging the fruit, making it a highly viable alternative to traditional methods. This paper reviews the recent research and applications of NIR spectrometry for fruit evaluation, highlighting its strengths and potential limitations. The analysis shows a significant potential for NIR spectrometry, especially when combined with machine learning and artificial intelligence to handle complex data and improve predictive models. The development of portable NIR spectrometers allows for in-situ quality assessment, expanding its applicability to various fields including on-site quality control. Despite the benefits, this review identifies key challenges including spectral complexity, fruit variability, and the influence of the external environment. Recommendations for future research include focusing on improving calibration and validation of models, increasing predictive accuracy, and developing user-friendly instruments. In addition, standardization of measurement procedures and analytical methods is needed to ensure comparability and reproducibility of results. Further research is needed to fully realize the full potential of NIR spectrometry in fruit quality control.
Keywords: NIR spectroscopy; temperate fruit; fruit evaluation; quality control; calibration and validation
Received: August 12, 2023; Revised: December 7, 2023; Accepted: December 12, 2023; Published: September 29, 2024 Show citation
References
- Adedeji A.A., Ekramirad N., Rady A., Hamidisepehr A., Donohue K.D., Villanueva R.T., Parrish C.A., Li M. (2020): Non-Destructive technologies for detecting insect infestation in fruits and vegetables under postharvest conditions: A critical review. Foods, 9: 927.
Go to original source...
Go to PubMed...
- Agulheiro-Santos A.C., Ricardo-Rodrigues S., Laranjo M., Melgão C., Velázquez R. (2022): Non-destructive prediction of total soluble solids in strawberry using near infrared spectroscopy. Journal of the Science of Food and Agriculture, 102: 4866-4872.
Go to original source...
- Ali M.M., Hashim N. (2022): Chapter 37 - Non-destructive methods for detecton of food quality. In: Bhat R.: Future Foods, Academic Press, 645-667.
Go to original source...
- Aline U., Bhattacharya T., Faqeerzada M.A., Kim M.S., Baek I., Cho B.K. (2023): Advancement of non-destructive spectral measurements for the quality of major tropical fruits and vegetables: a review. Frontiers in Plant Science, 14: 1240361.
Go to original source...
Go to PubMed...
- Amoriello T., Ciccoritti R., Carbone K. (2019): Vibrational spectroscopy as a green technology for predicting nutraceutical properties and antiradical potential of early-to-late apricot genotypes. Postharvest Biology and Technology, 155: 156-166.
Go to original source...
- Baek I., Mo C., Eggleton C., Gadsden S.A., Cho B.K., Qin J., Chan D.E., Kim M.S. (2022): Determination of spectral resolutions for multispectral detection of apple bruises using visible/near-infrared hyperspectral reflectance imaging. Frontiers in Plant Science, 13.
Go to original source...
Go to PubMed...
- Bai Y., Fang Y., Zhang B., Fan S. (2022): Model robustness in estimation of blueberry SSC using NIRS. Computers and Electronics in Agriculture, 198: 07073.
Go to original source...
- Basile T., Marsico A. D., Perniola R. (2022): Use of artificial neural networks and NIR spectroscopy for non-destructive grape texture prediction. Foods, 11: 281.
Go to original source...
Go to PubMed...
- Beć K.B., Grabska J., Huck C.W. (2022): Miniaturized NIR spectroscopy in food analysis and quality control: promises, challenges, and perspectives. Foods, 11: 1465.
Go to original source...
Go to PubMed...
- Benelli A., Cevoli C., Fabbri A., Ragni L. (2022): Hyperspectral imaging to measure apricot attributes during storage. Journal of Agricultural Engineering, 53: 1311.
Go to original source...
- Berardinelli A., Cevoli C., Silaghi F.A., Fabbri A., Ragn L., Giunchi A., Bassi D. (2010): FT-NIR Spectroscopy for the quality characterization of Apricots (Prunus armeniaca L.). Journal of Food Science, 75: E462-E468.
Go to original source...
Go to PubMed...
- Bureau S., Bogé M., Renard C.M.G.C., Audergon J.M. (2012a): Infrared spectroscopy: a rapid tool for apricot characterization. Acta Horticulturae (ISHS), 966: 249-254.
Go to original source...
- Bureau S., Quilot-Turion B., Signoret V., Renaud C., Maucourt M., Bancel D., Renard C.M. (2013): Determination of the composition in sugars and organic acids in peach using mid infrared spectroscopy: comparison of prediction results according to data sets and different reference methods. Analytical Chemistry, 85: 11312-11318.
Go to original source...
Go to PubMed...
- Bureau S., Reich M., Gouble B., Renard C., Bertrand D., Ruiz D., Audergon J.M., Lecomte A. (2010): Determination of apricot fruit quality using Fourier Transform infrared spectroscopy. Acta Horticulturae (ISHS), 862: 565-572.
Go to original source...
- Bureau S., Reich M., Renard C.M.G.C., Ruiz D., Audergon J.M. (2012b): Rapid characterization of apricot fruit quality using near and mid-infrared spectroscopy: study of the model robustness. Acta Horticulturae (ISHS), 934: 173-176.
Go to original source...
- Butz P., Hofmann C., Tauscher B. (2005): Recent developments in noninvasive techniques for fresh fruit and vegetable internal quality analysis. Journal of Food Science, 70: 131-141.
Go to original source...
- Buyukcan M.B., Kavdir I. (2017): Prediction of some internal quality parameters of apricot using FT-NIR spectroscopy. Food Measure, 11: 651-659.
Go to original source...
- Cadet X.F., Lo-Thong O., Bureau S., Dehak R., Bessafi M. (2019): Use of machine learning and infrared spectra for rheological characterization and application to the apricot. Scientific Reports, 9: 19197.
Go to original source...
Go to PubMed...
- Camps C., Christen D. (2009): Non-destructive assessment of apricot fruit quality by portable visible-near infrared spectroscopy. Food Science and Technology, 42: 1125-1131.
Go to original source...
- Canteri M.H.G., Renard C.M.M.C., Le Bourvellec C., Bureau S. (2019): ATR-FTIR spectroscopy to determine cell wall composition: Application on a large diversity of fruits and vegetables. Carbohydrate Polymers, 212: 186-196.
Go to original source...
Go to PubMed...
- Cattaneo T.M.P., Stellari A. (2019): Review: NIR Spectroscopy as a suitable tool for the investigation of the horticultural field. Agronomy, 9: 503.
Go to original source...
- Cen H., He Y. (2007): Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science and Technology, 18: 72-83.
Go to original source...
- Ciacciulli A., Bassi D., Castellari L., Foschi S. (2018): Fruit ripening evolution in diverse commercial apricots by conventional and non-destructive methods: preliminary results. Acta Horticulturae (ISHS), 1214: 165-170.
Go to original source...
- Cortés V., Blasco J., Aleixos N., Cubero S., Talens P. (2019): Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends in Food Science and Technology, 85: 138-148.
Go to original source...
- Costa R.C., de Lima K.M.G. (2013): Prediction of parameters (soluble solid and pH) in intact plum using NIR spectroscopy and wavelength selection. Journal of the Brazilian Chemical Society, 24: 1351-1356.
Go to original source...
- Cozzolino D., Zhang F., Li B., Yin H., Zou J., Ouyang A. (2022): Study on the quantitative assessment of impact damage of yellow peaches using the combined hyperspectral technology and mechanical parameters. Journal of Spectroscopy, 12.
Go to original source...
- Daniels A.J., Poblete-Echeverría C., Opara U.L., Nieuwoudt H.H. (2019): Measuring internal maturity parameters contactless on intact table grape bunches using NIR spectroscopy. Frontiers in Plant Science, 10: 1517.
Go to original source...
- del Río Celestino M., Font R. (2022): Using Vis-NIR spectroscopy for predicting quality compounds in foods. Sensors, 22: 4845.
Go to original source...
Go to PubMed...
- Donis-González I.R., Valero C., Momin M.A., KaurA., Slaughter D.C. (2020): Performance evaluation of two commercially available portable spectrometers to non-invasively determine table drape and peach quality attributes. Agronomy, 10: 148.
Go to original source...
- Ekramirad N., Adedeji A.A., Alimardani R. (2016): A review of non-destructive methods for detection of insect infestation in fruits and vegetables. Biosystems and Agricultural Engineering Faculty Publications, 20.
- Ekramirad N., Khaled A.Y., Doyle L.E., Loeb J.R., Donohue K.D., Villanueva R.T., Adedeji A.A. (2022): Nondestructive detection of codling moth infestation in apples using pixel-based NIR hyperspectral imaging with machine learning and feature Selection. Foods, 11: 8.
Go to original source...
Go to PubMed...
- El-Mesery H.S., Mao H., Abomohra A.E. (2019): Applications of non-destructive technologies for agricultural and food products quality inspection. Sensors (Basel), 19: 846.
Go to original source...
Go to PubMed...
- Escribano S., Biasi W.V., Lerud R., Slaughter D.C., Mitcham E.J. (2017): Non-destructive prediction of soluble solids and dry matter content using NIR spectroscopy and its relationship with sensory quality in sweet cherries. Postharvest Biology and Technology, 128: 112-120.
Go to original source...
- Fan S., Huang W., Guo Z., Zhang B., Zhao C. (2015a): Prediction of soluble solids content and firmness of pears using hyperspectral reflectance imaging. Food Analytical Methods, 8: 1936-1946.
Go to original source...
- Fan S., Huang W., Guo Z., Zhang B., Zhao C. (2015b): Prediction of soluble solids content and firmness of pears using hyperspectral reflectance imaging. Food Analytical Methods, 8: 1936-1946.
Go to original source...
- Fernández K., Labarca X., Bordeu E., Guesalaga A., Agosin E. (2007): Comparative study of wine tannin classification using fourier transform mid-infrared spectrometry and sensory analysis. Applied Spectroscopy, 61: 1163-1167.
Go to original source...
Go to PubMed...
- Fodor M. (2022): Development of FT-NIR technique to determine the ripeness of sweet cherries and sour cherries. Processes, 10: 2423.
Go to original source...
- Fodor M., Jókai Z., Matkovits A., Benes E. (2023): Assessment of maturity of plum samples using fourier transform near-infrared technique combined with chemometric methods. Foods, 12: 3059.
Go to original source...
Go to PubMed...
- Fu X., Ying Y., Xu H. (2009): Quantitative analysis of fruit firmness by near infrared spectroscopy and least-squares support vector machine. American Society of Agricultural and Biological Engineers, ASABE: 096475.
- Gao H., Zhu F., Cai J. (2010): A review of non-destructive detection for fruit quality. In: Li D., Zhao C. (eds): Computer and computing technologies in agriculture III. CCTA 2009. IFIP Advances in Information and Communication Technology, 317. Springer, Berlin, Heidelberg.
Go to original source...
- Geană E.I., Ciucure C.T., Apetrei C., Artem V. (2019): Application of spectroscopic UV-Vis and FT-IR screening techniques coupled with multivariate statistical analysis for red wine authentication: Varietal and vintage year discrimination. Molecules, 24: 4166.
Go to original source...
Go to PubMed...
- Goisser S., Wittmann S., Mempel H. (2021): Food-scanner applications in the fruit and vegetable sector. Landtechnik, 76: 52-67.
- Golmohammadi A., Tahmasebi M., Razavi M. S. (2022): Near infrared hyperspectral imaging for non-destructive determination of pH value in red delicious apple fruit during shelf life. Innovative Food Technologies, 9: 99-111.
- Gowen A.A., O'Donnell C.P., Cullen P.J., Downey G., Frias J.M. (2011): Hyperspectral imaging - an emerging process analytical tool for food quality and safety control. Trends in Food Science and Technology, 18: 590-598.
Go to original source...
- Grassi S., Casiraghi E. (2022): Advances in NIR spectroscopy analytical technology in food industries. Foods, 11: 1250.
Go to original source...
Go to PubMed...
- Guan Y., Wang D., Li N., Fu Y., Cheng Y., Guan J. (2022): Near-infrared technology-based non-destructive detection of the internal quality of shenzhou peaches. Modern Food Science and Technology, 38: 290-296.
- Guidetti R., Beghi R., Bodria L. (2010). Evaluation of grape quality parameters by a simple Vis/NIR System. Transactions of the ASABE, 53.
Go to original source...
- Guo H., Yan F., Li P., Li M. (2022): Determination of storage period of harvested plums by near-infrared spectroscopy and quality attributes. Journal of Food Processing and Preservation, 46: e16504.
Go to original source...
- Guo Z., Wang M., Agyekum A.A., Wu J., Chen Q., Zuo M., El-Seedi H.R., Tao F., Shi J., Ouyang Q., Zou X. (2020b): Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy. Journal of Food Engineering, 279: 109955.
Go to original source...
- Guo Z., Wang M., Shujat A., Wu J., El-Seedi H.R., Shi J., Ouyang Q., Chen Q., Zou X. (2020a): Nondestructive monitoring storage quality of apples at different temperatures by near-infrared transmittance spectroscopy. Food Science and Nutrition, 8: 3793-3805.
Go to original source...
Go to PubMed...
- Hahn F. (2009): Actual pathogen detection: sensors and algorithms - a review. Algorithms, 2: 301-338.
Go to original source...
- Han D., Tu R., Lu Ch., Liu X., Wen Z. (2006): Nondestructive detection of brown core in the Chinese pear 'Yali' by transmission visible-NIR spectroscopy. Food Control, 17: 604-608.
Go to original source...
- Hao Y., Li X., Zhang C., Lei Z. (2023): Online inspection of browning in yali pears using visible-near infrared spectroscopy and interpretable spectrogram-based CNN modeling. Biosensors, 13: 203.
Go to original source...
- Hasanzadeh B., Abbaspour-Gilandeh Y., Soltani-Nazarloo A., Cruz-Gámez E.D.L., Hernández-Hernández J. L., Martínez-Arroyo M. (2022): Non-destructive measurement of quality parameters of apple fruit by using visible/near-infrared dpectroscopy and multivariate regression snalysis. Sustainability, 14: 14918.
Go to original source...
- He W., Laaksonen O., Tian Y., Haikonen T., Yang B. (2022): Chemical composition of juices made from cultivars and breeding selections of European pear (Pyrus communis L.). Journal of Agricultural and Food Chemistry, 70: 5137-5150.
Go to original source...
Go to PubMed...
- He Y., Li X., Shao Y. (2007): Fast discrimination of apple varieties using Vis/NIR spectroscopy. International Journal of Food Properties, 10: 9-18.
Go to original source...
- Hernández-Hierro J.M., Cozzolino D., Feng C.H., Rato A.E., Nogales-Bueno J. (2022): Editorial: Recent advances of near Infrared applications in fruits and byproducts. Frontiers in Plant Science, 13: 858040.
Go to original source...
Go to PubMed...
- Huang X., Xu J., Gao F., Zhang H., Guo L. (2022): Rapid quantitative typing spectra model for distinguishing sweet and bitter apricot kernels. Food Science and Biotechnology, 31: 1123-1131.
Go to original source...
Go to PubMed...
- Huang Y., Lu R., Chen K. (2020a): Detection of internal defect of apples by a multichannel Vis/NIR spectroscopic system. Postharvest Biology and Technology, 161: 111065.
Go to original source...
- Huang Y., Wang D., Liu Y., Zhou H., Sun Y. (2020b): Measurement of early disease blueberries based on Vis/NIR hyperspectral imaging system. Sensors (Basel), 20: 5783.
Go to original source...
Go to PubMed...
- Chełpiński P., Chełpiński P., Ochmian I., Ochmian I., Forczmański P., Forczmańsk P. (2019): Sweet cherry skin colour measurement as an non-destructive aaindicator of fruit maturity. Acta Universitatis Cibiniensis, 23: 157-166.
Go to original source...
- Jarolmasjed S., Sankaran S., Marzougui A., Kostick S., Si Y., Quirós Vargas J.J., Evans K. (2019): High-throughput phenotyping of fire blight disease symptoms using sensing techniques in apple. Frontiers in Plant Science, 10.
Go to original source...
Go to PubMed...
- Jiang H., Wang W., Ni X., Zhuang H., Yoon S.C., Lawrence K. C. (2018): Recent advancement in near infrared spectroscopy and hyperspectral imaging techniques for quality and safety assessment of agricultural and food products in the China Agricultural University. NIR News, 29: 19-23.
Go to original source...
- Jiang X., Zhu M., Yao J., Zhang Y., Liu Y. (2022): Calibration of near infrared spectroscopy of apples with different fruit sizes to improve soluble solids content model performance. Foods, 11: 1923.
Go to original source...
Go to PubMed...
- Jiang Y., Li C., Takeda F. (2016): Nondestructive detection and quantification of blueberry bruising using near-infrared (NIR) hyperspectral reflectance imaging. Scientific Reports, 6: 35679.
Go to original source...
Go to PubMed...
- Kalopesa E., Karyotis K., Tziolas N., Tsakiridis N., Samarinas N., Zalidis G. (2023): Estimation of sugar content in wine grapes via in ditu VNIR-SWIR point spectroscopy using explainable artificial intelligence Techniques. Sensors, 23: 1065.
Go to original source...
Go to PubMed...
- Kavuncuoglu E., Çetin N., Yildirim B., Nadimi M., Paliwal J. (2023): Exploration of machine learning algorithms for pH and moisture estimation in apples using VIS-NIR imaging. Applied Sciences, 13: 8391.
Go to original source...
- Khodabakhshian R., Emadi B. (2017): Application of Vis/SNIR hyperspectral imaging in ripeness classification of pear. International Journal of Food Properties, 20: 3149-3163.
Go to original source...
- Kljusurić J.G., Mihalev K., Bečić I., Polović I., Georgieva M., Djaković S., Kurtanjek ®. (2016): Near-Infrared spectroscopic analysis of total phenolic content and antioxidant activity of berry fruits. Food Technology and Biotechnology, 54: 236-242.
Go to original source...
Go to PubMed...
- Kumaravelu C., Gopal A. (2015): A review on the applications of Near-Infrared spectrometer and chemometrics for the agro-food processing industries, 2015 IEEE Technological Innovation in ICT for Agriculture and Rural Development (TIAR), Chennai, India: 8-12.
Go to original source...
- Lafuente V., Herrera L.J., Pérez M.D.M., Val J., Negueruela I. (2015): Firmness prediction in Prunus persica 'Calrico' peaches by visible/short wave near infrared spectroscopy and acoustic measurements using optimized linear and non-linear chemometric models. Journal of the Science of Food and Agriculture, 95: 2033-2040.
Go to original source...
Go to PubMed...
- Larson J.E., Perkins-Veazie P., Ma G., Kon T.M. (2023): Quantification and prediction with near infrared spectroscopy of carbohydrates throughout apple fruit development. Horticulturae, 9: 279.
Go to original source...
- Lee K., Sukwon K., Moon K., Sang-Ha N. (2005): Hyperspectral imaging for detecting defect on apples. Tampa.
- Lee W.H., Kim M.S., Lee H., Delwiche S.R., Bae H., Kim D.Y., Cho B.K. (2014): Hyperspectral near-infrared imaging for the detection of physical damages of pear. Journal of Food Engineering, 130: 1-7.
Go to original source...
- Leiva-Valenzuela. G.A., Lu R., Aguilera J.M. (2013): Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. Journal of Food Engineering, 115: 91-98.
Go to original source...
- Li B., Hou B., Zhang D., Zhou Y., Zhao M., Hong R., Huang Y. (2016): Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging. Optik, 127: 2624-2630.
Go to original source...
- Li B., Yin H., Liu Y, Zhang F., Yang A, Su C., Ou-yang A. (2022): Detection storage time of mild bruise's yellow peaches using the combined hyperspectral imaging and machine learning method. Journal of Analytical Science and Technology, 13: 24.
Go to original source...
- Li C., Li L., Wu Y., Lu M., Yang Y., Li L. (2018a): Apple variety identification using near-infrared spectroscopy. Journal of Spectroscopy: 7.
Go to original source...
- Li J., Zhang H., Zhan B., Zhang Y., Li R., Jingbin Li J. (2020): Nondestructive firmness measurement of the multiple cultivars of pears by Vis-NIR spectroscopy coupled with multivariate calibration analysis and MC-UVE-SPA method. Infrared Physics and Technology, 104: 103154.
Go to original source...
- Li L., Fang J., Zhang H., Li C., Xu J., Jia B., Heng W., Ye Z., Jin X., Liu L. (2023): Non-destructive analysis for phosphorus vontent in the fruit of 'Huangguan' pear based on near-infrared spectroscopy. Preprints. Available at https://www.preprints.org/manuscript/202306.1741/v1
Go to original source...
- Li M., Lv W., Zhao R., Guo H., Liu J., Han D. (2017): Non-destructive assessment of quality parameters in 'Friar' plums during low temperature storage using visible/near infrared spectroscopy. Food Control, 73 (Part B): 1334-1341.
Go to original source...
- Li X., Wei Y., Xu J., Feng X., Wu F., Zhou R., Jin J., Xu K., Yu X., He Y. (2018b): SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biology and Technology, 143: 112-118.
Go to original source...
- Liang P., Moscetti R., Massantini R., Light D., Haff R.P. (2017): Detection of pits and pit fragments in fresh cherries using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 25: 196-202.
Go to original source...
- Lin H., Ying Y. (2009): Theory and application of near infrared spectroscopy in assessment of fruit quality: A review. Sensing and Instrumentation for Food Quality and Safety, 3: 130-141.
Go to original source...
- Lohumi S., Lee S., Lee H., Cho B.K. (2015): A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science and Technology, 64: 85-98.
Go to original source...
- Louw E.D., Theron K.I. (2010): Robust prediction models for quality parameters in Japanese plums (Prunus salicina L.) using NIR spectroscopy. Postharvest Biology and Technology, 58: 176-184.
Go to original source...
- Lu R., Peng Y. (2006): Hyperspectral scattering for assessing peach fruit firmness. Biosystems Engineering, 93: 161-171.
Go to original source...
- Lu Y., Lu R. (2017): Non-destructive defect detection of apples by spectroscopic and imaging technologies: A review. Transactions of the ASABE, 60: 1765-1790.
Go to original source...
- Lu Z., Lu R., Chen Y., Fu K., Song J., Xie L., Zhai R., Wang Z., Yang C., Xu L. (2022): Nondestructive testing of pear based on fourier near-infrared spectroscopy. Foods, 11: 1076.
Go to original source...
Go to PubMed...
- Luedeling E., Hale A., Zhang M., Bentley W.J., Dharmasri L.C. (2009): Remote sensing of spider mite damage in California peach orchards. International Journal of Applied Earth Observation and Geoinformation, 11: 244-255.
Go to original source...
- Luypaert J., Massart D.L., Heyden Y.V. (2007): Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta, 72: 865-883.
Go to original source...
Go to PubMed...
- Malvandi A., Feng H., Kamruzzaman M. (2022): Application of NIR spectroscopy and multivariate analysis for Non-destructive evaluation of apple moisture content during ultrasonic drying. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 269: 120733.
Go to original source...
Go to PubMed...
- Mancini M., Mazzoni L., Gagliardi F., Balducci F., Duca D., Toscano G., Mezzetti B., Capocasa F. (2020): Application of the non-festructive NIR technique for the evaluation of strawberry fruits quality parameters. Foods, 9: 441.
Go to original source...
- Mancini M., Mazzoni L., Qaderi R., Leoni E., Tonanni V., Gagliardi F., Capocasa F., Toscano G., Mezzetti B. (2023): Prediction of soluble solids content by means of NIR spectroscopy and relation with Botrytis cinerea tolerance in strawberry cultivars. Horticulturae, 9: 91.
Go to original source...
- Marečková M., Danková V., Zelený L., Suran P. (2022): Non-destructive near infrared spectroscopy externally validated using large number sets for creation of robust calibration models enabling prediction of apple firmness. Journal of Near Infrared Spectroscopy, 30: 97-104.
Go to original source...
- Meng Q., Shang J., Huang R., Zhang Y. (2021): Determination of soluble solids content and firmness in plum using hyperspectral imaging and chemometric algorithms. Journal of Food Process Engineering, 44: e13597.
Go to original source...
- Minas I.S., Anthony B.M., Pieper J.R., Sterle D.G. (2023): Large-scale and accurate non-destructive visual to near infrared spectroscopy-based assessment of the effect of rootstock on peach fruit internal quality. European Journal of Agronomy, 143: 126706.
Go to original source...
- Mishra P., Woltering E., Brouwer B., Hogeveen-van Echtelt E. (2021): Improving moisture and soluble solids content prediction in pear fruit using near-infrared spectroscopy with variable selection and model updating approach. Postharvest Biology and Technology, 171: 111348.
Go to original source...
- Mogollon M.R., Jara A.F., Contreras C., Zoffoli J.P. (2020): Quantitative and qualitative VIS-NIR models for early determination of internal browning in 'Cripps Pink' apples during cold storage. Postharvest Biology and Technology, 161: 111060.
Go to original source...
- Mozaffari M., Sadeghi S., Asefi N. (2022): Prediction of the quality properties and maturity of apricot by laser light backscattering imaging. Postharvest Biology and Technology, 186: 111842.
Go to original source...
- Muncan J., Anantawittayanon S., Furuta T., Kaneko T., Tsenkova R. (2022): Aquaphotomics monitoring of strawberry fruit during cold storage - A comparison of two cooling systems. Frontiers in Nutrition, 9: 1058173.
Go to original source...
Go to PubMed...
- Nader E., Ahmed R., Akinbode A.A., Reza A. (2017): Application of hyperspectral Imaging and acoustic emission techniques for apple quality prediction. Transactions of the ASABE, 60: 1391-1401.
Go to original source...
- Nagpala E. G. L., Noferini M., Farneti B., Piccinini L., Costa G. (2017): Cherry-Meter: an innovative non-destructive (vis/NIR) device for cherry fruit ripening and quality assessment. Acta Horticulturae (ISHS), 1161: 491-496.
Go to original source...
- Nicolaï B.M., Beullens K., Bobelyn E., Peirs A., Saeys W., Theron K.I., Lammertyn J. (2007): Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46: 99-118.
Go to original source...
- Overbeck V., Schmitz M., Blanke M. (2017): Non-destructive sensor-based prediction of maturityand optimum harvest date of sweet cherry fruit. Sensors, 17: 277.
Go to original source...
Go to PubMed...
- Özdemir İ. S., Bureau S., Öztürk B., Seyhan F., Aksoy H. (2019): Effect of cultivar and season on the robustness of PLS models for soluble solid content prediction in apricots using FT-NIRS. Journal of Food Science and Technology, 56: 330-339.
Go to original source...
Go to PubMed...
- Pandiselvam R., Prithviraj V., Manikantan M.R., Kothakota A., Rusu A.V., Trif M., Khaneghah A.M. (2022): Recent advancements in NIR spectroscopy for assessing the quality and safety of horticultural products: A comprehensive review. Frontiers in Nutrition, 9: 973457.
Go to original source...
Go to PubMed...
- Parpinello G.P., Ricci A., Arapitsas P., Curioni A., Moio L., Riosegade S., Ugliano M., Versari A. (2019): Multivariate characterisation of Italian monovarietal red wines using MIR spectroscopy. OENO One, 4: 741-751.
Go to original source...
- Patel M., Shah M., Dave J. (2016): Near infrared spectroscopy in industries: A Review on research contribution. International Journal of Advance Engineering and Research Development (IJAERD), 3: 174-183.
Go to original source...
- Pathmanaban P., Gnanavel B.K., Anandan S.S. (2019): Recent application of imaging techniques for fruit quality assessment. Trends in Food Science and Technology, 94: 32-42.
Go to original source...
- Paz P., Sánchez M. T., Pérez-Marín D., Guerrero J.E., Garrido-Varo A. (2008): Nondestructive determination of total soluble solid content and firmness in plums using near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, 56: 2565-2570.
Go to original source...
Go to PubMed...
- Ping F., Yang J., Zhou X., Su Y., Ju Y., Fang Y., Bai X., Liu W. (2023): Quality assessment and ripeness prediction of table grapes using visible-near-infrared spectroscopy. Foods, 12: 2364.
Go to original source...
Go to PubMed...
- Pissard A., Baeten V., Dardenne P., Dupont P., Lateur M. (2018): Use of NIR spectroscopy on fresh apples to determine the phenolic compounds and dry matter content in peel and flesh. BASE, 22: 3-12.
Go to original source...
- Pissard A., Nascimento Marques E. J., Dardenne P., Lateur M., Pasquini C., Pimentel M. F., Fernández Pierna J.A., Baeten V. (2021): Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality. Postharvest Biology and Technology, 172: 111375.
Go to original source...
- Poblete-Echeverría C., Daniels A.J., Nieuwoudt H.H. Opara U. L. (2020): Artificial neural network as alternative method for prediction of sugar and acidity using near-infrared spectroscopy in table grapes. Acta Horticulturae (ISHS), 1292: 321-328.
Go to original source...
- Porep J.U., Kammerer D.R., Carle R. (2015): On-line application of near infrared (NIR) spectroscopy in food production. Trends in Food Science and Technology, 46: 211-230.
Go to original source...
- Posom J., Klaprachan J., Rattanasopa K., Sirisomboon P., Saengprachatanarug K., Wongpichet S. (2020): Predicting marian plum fruit quality without environmental condition impact by handheld visible-near-infrared spectroscopy. ACS Omega, 5: 27909-27921.
Go to original source...
Go to PubMed...
- Qu J.H., Liu D., Cheng J.H., Sun D.W., Ma J., Pu H., Zeng X. A. (2015): Applications of near-infrared spectroscopy in food safety evaluation and control: a review of recent research advances. Critical Reviews in Food Science and Nutrition, 55: 1939-1954.
Go to original source...
Go to PubMed...
- Rodríguez-Pulido F.J., Gil-Vicente M., Gordillo B., Heredia F.H., González-Miret M.L. (2017): Measurement of ripening of raspberries (Rubus idaeus L.) by near infrared and colorimetric imaging techniques. Journal of Food Science and Technology, 54: 2797-2803.
Go to original source...
- Rong D., Wang H., Ying Y., Zhang Z., Zhang Y. (2020): Peach variety detection using VIS-NIR spectroscopy and deep learning. Computers and Electronics in Agriculture, 175: 105553.
Go to original source...
- Saeys W. (2023): Near-infrared technologies from farm to fork. In: Encyclopedia of smart agriculture technologies. Cham: Springer International Publishing.
Go to original source...
- Scalisi A., O'Connell M.G. (2021): Application of visible/NIR spectroscopy for the estimation of soluble solids, dry matter and flesh firmness in stone fruits. Journal of the Science of Food and Agriculture, 101: 2100-2107.
Go to original source...
Go to PubMed...
- Seki H., Ma T., Murakami H., Tsuchikawa S., Inagaki T. (2023): Visualization of sugar content distribution of white strawberry by near-infrared hyperspectral imaging. Foods, 12: 931.
Go to original source...
Go to PubMed...
- Shao Y., Xuan G., Hu Z., Gao Z., Liu L. (2019): Determination of the bruise degree for cherry using Vis-NIR reflection spectroscopy coupled with multivariate analysis. PLoS ONE 14: e0222633.
Go to original source...
Go to PubMed...
- Shen F., Zhang B., Cao C., Jiang X. (2018): On-line discrimination of storage shelf-life and prediction of post-harvest quality for strawberry fruit by visible and near infrared spectroscopy. Journal of Food Process Engineering, 41: e12866.
Go to original source...
- Shunchang C., Xuqiao F., Shujuan J., Xiaolin R., Shigefuji K. (2011): Measurement of soluble solid content in apple using near infrared spectroscopy. International Conference on New Technology of Agricultural, Zibo, 7: 1069-1072.
Go to original source...
- Sinelli N., Casiraghi E., Barzaghi S., Brambilla A., Giovanelli G. (2011): Near infrared (NIR) spectroscopy as a tool for monitoring blueberry osmo-air dehydration proces. Food Research International, 44: 1427-1433.
Go to original source...
- Slaughter D.C., Abbott J.A. (2004). Analysis of fruits and vegetables. Near-Infrared Spectroscopy in Agriculture, 44: 377-398.
Go to original source...
- Sohn S.I., Pandian S., Oh Y.J., Zaukuu J.Z., Kang H.J., Ryu T.H., Cho W.S., Cho Y.S., Shin E.K., Cho B.K. (2021): An overview of near infrared spectroscopy and its applications in the detection of genetically modified organisms. International Journal of Molecular Sciences, 22: 9940.
Go to original source...
Go to PubMed...
- Sun X., Zhang H., Pan Y., Liu Y. (2009): Nondestructive measurement soluble solids content of apple by portable and online near infrared spectroscopy. Proc. SPIE 7514, Photonics and Optoelectronics Meetings (POEM) 2009: Fiber Optic Communication and Sensors, 75140P (28 October 2009).
Go to original source...
- Sun Y., Huang Y., Pan L., Wang X. (2021): Evaluation of the Changes in Optical Properties of Peaches with Different Maturity Levels during Bruising. Foods, 10: 388.
Go to original source...
- Sun Y., Lu R., Lu Y., Tu K., Pan L. (2019): Detection of early decay in peaches by structured-illumination reflectance imaging. Postharvest Biology and Technology, 151: 68-78.
Go to original source...
- Sun Y., Wei K., Liu Q., Pan L., Tu K. (2018b): Classification and discrimination of different fungal diseases of three infection levels on peaches using hyperspectral reflectance imaging analysis. Sensors, 18: 1295.
Go to original source...
Go to PubMed...
- Sun Y., Xiao H., Tu S., Sun K., Pan L., Tu K. (2018a): Detecting decayed peach using a rotating hyperspectral imaging testbed. LWT - Food Science and Technology, 87: 326-332.
Go to original source...
- Szabo G., Vitalis F., Horvath-Mezofi Z., Gob M., Aguinaga Bosquez J. P., Gillay Z., Zsom T., Nguyen L. L. P., Hitka G., Kovacs Z., Friedrich L. (2023): Application of near infrared spectroscopy to monitor the quality change of sour cherry stored under modified Atmosphere conditions. Sensors, 23: 479.
Go to original source...
- Taghinezhad E., Rasooli Sharabiani V., Shahiri M., Moinfar A., Szumny A. (2023): Predicting quality properties of pears during storage using hyper spectral imaging system. Agriculture, 13: 1913.
Go to original source...
- Tian X., Liu X., He X., Zhang C., Li J., Huang W. (2023): Detection of early bruises on apples using hyperspectral reflectance imaging coupled with optimal wavelengths selection and improved watershed segmentation algorithm. Journal of the Science of Food and Agriculture, 103: 6689-6705.
Go to original source...
Go to PubMed...
- Tian X., Wang Q., Li J., Peng F., Huang W. (2018): Non-destructive prediction of soluble solids content of pear based on fruit surface feature classification and multivariate regression analysis. Infrared Physics and Technology, 92: 336-344.
Go to original source...
- Toledo-Martín E.M., García-García M. D.C., Font R., Moreno-Rojas J.M., Salinas-Navarro M., Gómez P., del Río-Celestino M. (2018): Quantification of total phenolic and carotenoid content inb (Rubus fructicosus L.) using near infrared spectroscopy (NIRS) and multivariate analysis. Molecules, 23: 319.
Go to original source...
Go to PubMed...
- Tsuchikawa S., Te M., Tetsuya I. (2022): Application of near-infrared spectroscopy to agriculture and forestry. Analytical Sciences, 38: 1-8.
Go to original source...
Go to PubMed...
- Uwadaira Y., Sekiyama Y., Ikehata A. (2018): An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy. Heliyon, 4: e00531.
Go to original source...
Go to PubMed...
- van Wyngaard E., Blancquaert E., Nieuwoudt H., Aleixandre-Tudo J.L. (2021): Infrared spectroscopy and chemometric applications for the qualitative and quantitative investigation of grapevine organs. Frontiers in Plant Science, 12: 723247.
Go to original source...
- Vilvert J.C., Ferreira dos Santos L., Cardoso A.D., Lopes P. R.C., Talamini do Amarante C.V., Tonetto de Freitas S. (2023): Non-destructive assessment of quality traits in apples and pears using near infrared spectroscopy and chemometrics. Revista Brasileira de Fruticultura, 45: 969.
Go to original source...
- Vlaic R.A., Mureșan A.E., Mureșan C.C., Petruț G.S., Mureșan V., Muste S. (2018): Quantitative Analysis by HPLC and FT-MIR Prediction of Individual Sugars from the Plum Fruit Harvested during Growth and Fruit Development. Agronomy, 8: 306.
Go to original source...
- Wang F., Zhao C., Yang G. (2020): Development of a non-destructive method for detection of the juiciness of pear via VIS/NIR spectroscopy combined with chemometric methods. Foods, 9: 1778.
Go to original source...
Go to PubMed...
- Wang T., Chen J., Fan Y., Qiu Z., He Y. (2018): SeeFruits: design and evaluation of a cloud-based ultra-portable NIRS system for sweet cherry quality detection. Computers and Electronics in Agriculture, 152: 302-313.
Go to original source...
- Weijie L. (2021): Applications using infrared spectroscopy to detect and bridge the variability and heterogeneity before and after fruit processing: a case study on apple purees. Agricultural Sciences. Université d'Avignon.
- Wenga S., Yua S., Dongb R., Pana F., Liang D. (2023): Nondestructive detection of storage time of strawberries usingvisible/near-infrared hyperspectral imaging. International Journal of Food Properties, 23: 269-281.
Go to original source...
- Williams D., Karley A., Britten A., McCallum S., Graham J. (2023): Raspberry plant stress detection using hyperspectral imaging. Plant Direct, 7: e490.
Go to original source...
- Włodarska K., Khmelinskii I., Sikorska E. (2018): Evaluation of quality parameters of apple juices using near-infrared spectroscopy and chemometrics. Hindawi Journal of Spectroscopy, 2018: 1-8.
Go to original source...
- Włodarska K., Szulc J., Khmelinskii I., Sikorska E. (2019): Non-destructive determination of strawberry fruit and juice quality parameters using ultraviolet, visible, and near-infrared spectroscopy. Journal of the Science of Food and Agriculture, 99: 5953-5961.
Go to original source...
Go to PubMed...
- Workman Jr. J., Weyer L. (2012). Practical guide and spectral atlas for interpretive near-infrared spectroscopy. CRC Press.
Go to original source...
- Wu G., Fang Y., Jiang Q., Cui M., Li N., Ou Y., Diao Z., Zhang B. (2023): Early identification of strawberry leaves disease utilizing hyperspectral imaging combing with spectral features, multiple vegetation indices and textural features. Computers and Electronics in Agriculture, 204: 107553.
Go to original source...
- Wu D., Sun D.W. (2013): Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review - Part II: Applications. Innovative Food Science and Emerging Technologies, 19: 15-28.
Go to original source...
- Xie L., Ying Y., Lin H., Zhou Y., Niu X. (2008). Nondestructive determination of soluble solids content and pH in tomato juice using NIR transmittance spectroscopy. Sensing and Instrumentation for Food Quality and Safety, 2: 111-115.
Go to original source...
- Yan H., De Gea Neves M., Noda I., Guedes G.M., Silva Ferreira A.C., Pfeifer F., Chen X., Siesler H.W. (2023): Handheld near-infrared spectroscopy: State-of-the-art instrumentation and applications in material identification, food authentication, and environmental investigations. Chemosensors, 11: 272.
Go to original source...
- Yang Q., Tian S., Xu H. (2022): Identification of the geographic origin of peaches by VIS-NIR spectroscopy, fluorescence spectroscopy and image processing technology. Journal of Food Composition and Analysis, 114: 104843.
Go to original source...
- Ye W., Xu W., Yan T., Yan J., Gao P., Zhang C. (2022): Application of near-infrared spectroscopy and hyperspectral imaging combined with machine learning algorithms for quality inspection of grape: A review. Foods, 12: 132.
Go to original source...
Go to PubMed...
- Yeh Y.H., Chung W.C., Liao J.Y., Chung C.L., Kuo Y.F., Lin T.T. (2016): Strawberry foliar anthracnose assessment by hyperspectral imaging. Computers and Electronics in Agriculture, 122: 1-9.
Go to original source...
- Yu X., Lu Q., Gao H., Ding H. (2016): Development of a handheld spectrometer based on a linear variable filter and a complementary metal-oxide-semiconductor detector for measuring the internal quality of fruit. Journal of Near Infrared Spectroscopy, 24: 69-76.
Go to original source...
- Zhang B., Li J., Fan S., Huang W., Zhao C., Liu C., Huang D. (2015): Hyperspectral imaging combined with multivariate analysis and band math for detection of common defects on peaches (Prunus persica). Computers and Electronics in Agriculture, 114: 14-24.
Go to original source...
- Zhang H., Wang J., Ye S. (2008): Prediction of soluble solids content, firmness and pH of pear by signals of electronic nose sensors. Analytica Chimica Acta, 606: 112-118.
Go to original source...
Go to PubMed...
- Zhang Y., Nock J. F., Shoffe Y.A., Watkins C.B. (2019): Non-destructive prediction of soluble solids and dry matter contents in eight apple cultivars using near-infrared spectroscopy. Postharvest Biology and Technology, 151: 111-118.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.