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Abstract: Near-Infrared (NIR) spectrometry has emerged as a promising tool for the non-destructive and rapid
analysis of temperate fruit quality, maturity, and other parameters. The technique provides a wealth of informa-
tion, including details of chemical composition, without damaging the fruit, making it a highly viable alternative
to traditional methods. This paper reviews the recent research and applications of NIR spectrometry for fruit
evaluation, highlighting its strengths and potential limitations. The analysis shows a significant potential for NIR
spectrometry, especially when combined with machine learning and artificial intelligence to handle complex
data and improve predictive models. The development of portable NIR spectrometers allows for in-situ quality
assessment, expanding its applicability to various fields including on-site quality control. Despite the benefits, this
review identifies key challenges including spectral complexity, fruit variability, and the influence of the external
environment. Recommendations for future research include focusing on improving calibration and validation
of models, increasing predictive accuracy, and developing user-friendly instruments. In addition, standardiza-
tion of measurement procedures and analytical methods is needed to ensure comparability and reproducibility
of results. Further research is needed to fully realize the full potential of NIR spectrometry in fruit quality control.
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Topic definition: NIR Spectroscopy and its ap-
plication on temperate fruits. This scientific review
focuses on the applications of the near-infrared (NIR)
spectroscopy method in the context of temperate
fruit species. NIR spectroscopy, a rapid and non-con-
tact analytical method, is used in many fields, includ-
ing food, and provides detailed data on the chemi-
cal composition and quality of samples (Porep
et al. 2015). In the field of fruit products, it is an ef-
fective tool to evaluate quantitative and qualitative
characteristics, such as maturity, sugar content, acid-

ity, and others (Nicolai et al. 2007; Hernandez-Hierro
et al. 2022; Pandiselvam et al. 2022; Fodor et al. 2023).
The use of NIR spectroscopy on fruit brings numer-
ous advantages, including speed of analysis, minimal
sample preparation, and the possibility of repeated
measurements on the same sample without damage
(Cattaneo, Stellari 2019). These characteristics make
it an essential tool for monitoring and controlling
storage processes, maturity, and fruit quality.
Although previous research has already provided
many useful insights (Luypaert et al. 2007; Cortés
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et al. 2019; Pathmanaban et al. 2019), there are still
areas that require further investigation. Therefore,
this article focuses on an overview of research in the
field of NIR spectroscopy on temperate fruit.

Importance of the topic and motivation
for conducting the review. The motivation for in-
vestigating the application of NIR spectroscopy
to temperate fruit species is multifaceted. As a fun-
damental part of the diet, temperate fruits require
detailed assessment of quality, maturity, and nu-
tritional parameters to ensure food safety (Nicolai
et al. 2007; Hernandez-Hierro et al. 2022; Ye et al.
2022; Fodor et al. 2023). Traditional methods, while
effective, can be laborious and potentially destruc-
tive. NIR spectroscopy offers a rapid and non-in-
vasive solution, which optimizes control processes
(He et al. 2022).

However, questions remain regarding the optimal
methods and models for fruit evaluation, the influ-
ence of various factors on spectral characteristics,
and the development of new technologies. Research
can contribute to the development of new knowledge
and improve food quality and safety, which supports
the use of temperate fruits in the food industry.

Aim of this article. The aim of this article is to thor-
oughly evaluate the advances and developments
in the field of NIR spectroscopy applied to temper-
ate fruits. This task is motivated by the rapid progress
and widespread use of NIR spectroscopy in the food
industry, which requires an updated review of its ap-
plications and potential.

This review will focus on key aspects of the ap-
plication of NIR spectroscopy to fruit and will com-
pare the results obtained by NIR spectroscopy with
traditional analytical methods. It will also evaluate
the benefits and limitations of this technology.

Finally, this review will attempt to identify gaps,
challenges, and opportunities for future research
in the field of NIR spectroscopy on fruit. Our litera-
ture review will focus on research that could contrib-
ute to the further development and use of this tech-
nology to benefit the production and consumption
of temperate fruits.

Principles of near-infrared spectroscopy. Near-
Infrared spectroscopy, a technology based on the in-
teraction of near-infrared radiation with a sample, is
an effective tool for the rapid and contact-free evalu-
ation of fruit composition and quality. The principle
of the method is based on the use of specific absorp-
tion patterns of NIR radiation by different fruit com-
ponents, such as sugars, acids, and other organic
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compounds (Uwadaira et al. 2018). For quantitative
analysis, calibration models are used that correlate
spectral data with reference values obtained by tradi-
tional analytical methods (Li et al. 2018b).

Advantages and limitations of this technology
in fruit evaluation. One of the main benefits of NIR
spectroscopy is its rapid and continuous measure-
ment, which can be performed in-line, on-line, or at-
line, thus being optimal for industrial use (Xie et al.
2008; Patel et al. 2016). This technology also offers
the possibility of non-invasive measurement, which
is critical for fruit quality assessment, as any sample
damage can skew the results and affect the quality
of the final product (Tian et al. 2018).

NIR spectroscopy offers many benefits for temper-
ate fruit evaluation. Key advantages include:

Speed and efficiency: NIR spectroscopy allows
for rapid and non-invasive fruit evaluation, sav-
ing time and resources. Single measurements with
an NIR spectrometer provide comprehensive data on
the chemical composition and quality of the fruit
(Huang et al. 2020a; Minas et al. 2023).

Calibration of models: Proper use of NIR spectros-
copy requires calibration of models, which involves
collecting reference data and correlating them with
NIR spectra. Proper calibration is key to obtaining
accurate results (Mareckovi et al. 2022).

Contactless measurement: NIR spectroscopy al-
lows for contactless measurement, minimizing
physical interaction with the fruit and reducing
the risk of damaging or contaminating it (Malvandi
et al. 2022).

Multicomponent analysis: NIR spectroscopy al-
lows the simultaneous analysis of different fruit com-
ponents. This technology enables the quantification
of various substances such as sugars, acids, vitamins,
flavonoids, and others that influence the quality and
nutritional value of fruit (Nader et al. 2017; del Rio
Celestino, Font 2022).

Wide application: NIR spectroscopy has many ap-
plication in agriculture, food industry, and research.
It is used for fruit evaluation at harvest, maturity
control, quality management, and variety selection
(Slaughter, Abbott 2004; Xie et al. 2008; Kumaravelu,
Gopal 2015; Patel et al. 2016; Li et al. 2018a; Huang
et al. 2020a; Li et al. 2021; Fodor et al. 2023).

However, NIR spectroscopy has certain limitations
and challenges:

Need for calibration: Proper use of NIR spectros-
copy requires calibration of models, which involves
collecting reference data and correlating them with
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NIR spectra. Accurete calibration is key to obtaining
accurate results (Tsuchikawa et al. 2022).

Influence of external factors: Various factors such
as temperature, humidity, illumination, and external
interaction with the fruit can affect NIR spectros-
copy, which can influence the spectral characteristics
and require appropriate correction procedures (Qu
et al. 2015; Lin et al. 2009; Ying et al. 2009).

Limited penetration depth: NIR spectroscopy mea-
sures the interaction of light with the sample surface,
which limits its ability to analyze the internal struc-
ture of the fruit. This can be problematic when evalu-
ating parameters that change during fruit ripening
and maturation (Lafuente et al. 2015; Lu, Lu 2017).

Detection of specific substances: NIR spectroscopy
may be insensitive to some substances that are pres-
ent in fruit at low levels, or that are difficult to detect
(Cen, He 2007; Jiang et al. 2018).

The importance of instrument calibration and
validation to ensure accurate results. The use
of NIR spectroscopy presents certain challenges,
including the need for careful calibration and vali-
dation of instruments, necessary both during initial
setup and on an ongoing basis during operation,
to compensate for potential influences of factors
such as temperature, humidity, and other variables
that may affect the results (Gao et al. 2010; Lohumi
et al. 2015; Donis-Gonzalez et al. 2022). Results can
be affected by variability in fruit samples, including
heterogeneity, changes in maturity, and other fac-
tors that influence NIR radiation absorption patterns
(Tian et al. 2018). Ensuring quality control of mea-
surements is necessary to maintain the accuracy and
reliability of instruments, including proper detector
settings, spectral calibration checks, and measure-
ment accuracy. Calibration determines the relation-
ship between the measured NIR spectra and refer-
ence values, which are generated based on a sufficient
amount of reference samples (Wu, Sun 2013; Huang
et al. 2020a; Hasanzadeh et al. 2022).

APPLICATION OF NIR SPECTROMETRY
TO TEMPERATE ZONE FRUIT
Pome fruits

Apples. NIR spectrometry has demonstrated its
potential for rapid and accurate evaluation of apple
quality at the industrial level, including parameters
such as sugar content, acidity, firmness, and colour
(Patel et al. 2016; Nader et al. 2017; Zhang et al. 2019;
Guo et al. 2020a; Mareckova et al. 2022; Vlivert
et al. 2023). This method has also been successfully

applied to the estimation of apple composition, in-
cluding antioxidants, and polyphenols (Pissard et al.
2018; Guo et al. 2020a). Chemometric methods such
as partial least squares (PLSR) , support vector ma-
chine (SVM), multiple linear regression (MLR) have
been used to accurately predict these parameters
(Shunchang et al. 2011).

Calibration models were developed to determine
the soluble solids content (SSC) in apples in the
spectral range of 643.26-928.35 nm have been
developed, with a correlation coefficient of 0.938,
a calibration standard error of 0.38, a prediction
standard error of 0.46, and a deviation of —0.0015
(Shunchang et al. 2011).

Spectroscopic methods were also successfully used
to predict the flesh firmness of apple varieties ‘Gala,
‘Red Jonaprince, and ‘Jonagored’ with the coefficient
of determination for calibration (R?) and the ratio
of prediction to deviation (RPD) exceeding values
of 0.91 and 2.3, respectively. The highest R*> and RPD
values achieved were 0.94 and 2.6 with a calibration
error of 5.87 N and cross-validation error of 6.75 N
(Mareckova et al. 2022).

A comparison of a portable NIR spectrometer and
online NIR system for determination of SSC showed
better results for the portable measurement mode
with R?> and root mean square error of prediction
(RMSEP) values of 0.88 and 0.80 °Brix compared
to the online mode with values of 0.82 and 1.01 °Brix
(Sun et al. 2009).

For ‘Gala, ‘Honeycrisp, ‘Mclntosh; ‘Jonagold;
‘NY1, ‘NY2; ‘Red Delicious; and ‘Fuji’ apple varieties,
a portable spectrophotometer was used with a mea-
surement range of 300—1 100 nm and a resolution
of 3 nm was used to evaluate parameters such as SSC
and dry matter content (DMC) of fruits. R* values
reached up to 0.9 for SSC and 0.92 for DMC with
root mean square error (RMSE) values around 0.67%
for SSC and 5.88 g/kg for DMC (Zhang et al. 2019).

Models for the determination DMC and SSC
in apples were developed over a storage period
of 10 weeks at 0.5 °C. Spectra were obtained using
a portable spectrometer in the wavelength range
750—-1065 nm. R? values reached 0.58 for SSC and
0.55 for DMC with RMSEP values less than 8% (VIi-
vert et al. 2023).

Cross-validation models for apple dry matter
content reached R values of up to 0.95. Three dif-
ferent commercial food scanners were used: SCi-
OTM, E-750 Produce Quality Meter, and H-100F
(Goisser et al. 2021).
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Hyperspectral imaging (HSI) and acoustic emis-
sion (AE) measurements were identified as effective
methods for predicting some qualitative character-
istics of the apple variety ‘GoldRush’ HSI achieved
better predictive capabilities than AE for firmness,
TSS, and colour parameters (L*, a*, b*) with ratio of
prediction (RP) values of 0.92, 0.41, 0.83, 0.87, and
0.94 and RMSEP values of 4.32 (N), 1.78 (°Brix), 3.41,
2.28, and 4.29. AE achieved ratio of prediction (RP)
values of 0.88, 0.74, 0.34, 0.37, and 0.81 and RM-
SEP values of 4.26 (N), 0.64 (“Brix), 4.69, 1.8, and
5.17 for firmness, TSS, and colour parameters (L%,
a*, b*) (Nader et al. 2017).

In a combined model using the competitive adap-
tive reweighted sampling (CARS), PLS, and mixed
temperature compensation (MTC) methods, high
efficiency was demonstrated in predicting various
characteristics of apples (such as SSC, vit. C, titrat-
able acidity (TA), and firmness) with RP values up
to 0.9236 and RPD up to 2.604. A portable spectrom-
eter was used to obtain NIR spectra of apples cover-
ing 590-1 200 nm (Guo et al. 2020a).

CARS-PLS models achieved optimal results
in predicting SSC and water core rate in apples,
reaching RP 0.9562 and 0.9808 and RMSEP 1.340%
and 0.327 °Brix, respectively, when using a spectral
range of 600—1 000 nm. The significant RPD value
reached 3.720 and 4.845 for these parameters (Guo
et al. 2020b).

A rapid and non-invasive determination of phe-
nolic compound content and dry matter was per-
formed on 20 apple varieties (Pissard et al. 2018).
Calibration and validation models for predicting
total phenolic compounds (TPC) and dry matter
(DM) prediction showed high determination co-
efficients (R?) for TPC, with values slightly higher
for peel than for flesh (R%>val = 0.91 and 0.84; Pis-
sard et al. 2018). For DM, the models also achieved
high determination coefficients of determination
and RPD, indicating accurate predictions (R* = 0.94,
RPD = 4.8 for skin and R? = 0.94, RPD = 4.9 for flesh
(Pissard et al. 2018).

Sugars in the growth stages of ‘Gala’ and ‘Red De-
licious’ apple varieties were quantified using high
performance liquid chromatography (HPLC). Sor-
bitol, the dominant sugar (40%), decreased to less
than 10% after 59 days. Fructose increased from
40% to 50%. Calibration models were created using
PLS to compare HPLC and reflectance spectra. NIR
models predicted sugar content with R* between
0.60 and 0.96 (Larson et al. 2023).
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Hyperspectral imaging (400-1000 nm) was used
to evaluate the quality of ‘Red Delicious’ apples after
60 days of storage. pH was determined destructively.
PLS analysis and Savitzky-Golay smoothing obtained
RMSE 0.02 and 0.018 and R? 0.980. ANN (artificial
neural network) performed modelling of 9 optimal
wavelengths with the best result (Golmohammadi
et al. 2022).

Research focuses on the use of low-cost VIS-NIR
HSI (386-1028 nm) for predicting the moisture
content and pH of ‘Pink Lady’ apple variety at three
ripening stages. HSI data analysis was performed
using PLSR (partial least squares regression), MLR
(multiple linear regression), KNN (k-nearest neigh-
bour), DT (decision tree), and ANN (artificial neu-
ral network) algorithms. The analysis focused on
11 optimal features identified by the Bootstrap
Random Forest method. The ANN algorithm pro-
vided the best performance with R? 0.868 and RMSE
0.756 for MC and R? 0.383 and RMSE 0.044 for pH
(Kavuncuoglu et al. 2023).

Subsequently, Kavuncuoglu et al. (2023) confirmed
the use of NIR spectrometry for predicting apple
ripeness, thus optimizing harvesting and sales. Dif-
ferentiation between apple varieties was investigated
by He et al. (2007), who concluded its effectiveness
based on spectral characteristics.

The correction of NIR spectra due to apple size
was performed by studying the extinction coeffi-
cients, resulted in an improvement in the correlation
coefficient (RP) from 0.769 to 0.869 and a reduction
in the root mean square error of prediction (RMSEP)
from 0.990 to 0.721 for smaller apples. For larger ap-
ples, RP increased from 0.787 to 0.932 and RMSEP
decreased from 0.878 to 0.531 (Jiang et al. 2022).

NIR spectroscopy has also been successfully ap-
plied to the analysis of commercial apple juices.
Quantitative relationships between spectra and
juice properties, such as soluble solids content
(SSC), titratable acidity (TA), and the SSC/TA ra-
tio, were identified using the PLS regression meth-
od. The best model for predicting SSC (R* = 0.881,
root mean square error of cross validation (RM-
SECV) = 0.277°Brix, and relative error (RE) = 2.37%)
was obtained for spectra preprocessed by the first
derivative and variable selection using the jack-knife
method. The best model for TA (R* = 0.761, RM-
SECV = 0.239 g/L, and RE = 4.55%) was obtained
for smoothed spectra in the 6224-5350 cm/range.
The optimal model for the SSC/TA ratio (R?=0.843,
RMSECV = 0.113, and RE = 5.04%) was obtained
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for unprocessed spectra in the 6 224—5 350 cm™!
range (Wlodarska et al. 2018).

NIR spectrometry is also used to identify and mon-
itor pests (Gowen et al. 2007; Ekramirad et al. 2016;
Adedeji et al. 2020; Ekramirad et al. 2022). This meth-
od is also effective in identifying resistant fruit variet-
ies that can be distinguished by spectral characteris-
tics (Jarolmasjed et al. 2019; Jarolmasjed et al. 2019).

Research by Hahn (2009) showed that NIR spec-
trometry can differentiate healthy fruit from fruit af-
fected by fungal diseases.

NIR spectrometry is also used to detect physi-
ological disorders in fruit, such as bruising or internal
browning. The method can identify specific spectral
signals associated with these disorders, allowing their
rapid diagnosis and resolution (Lee et al. 2005; Mogo-
llon et al. 2020; Baek et al. 2022; Tian et al. 2023).

Pears. Pears are another fruit where NIR spec-
troscopy has been successfully applied. It is effec-
tively used to predict attributes such as flesh firm-
ness, sugar content, and acidity in fruit, including
pears. This has been confirmed by many studies
(Fu et al. 2009; Khodabakhshian, Emadi 2017;
Li et al. 2020; Mishra et al. 2021; Lu et al. 2022;
Taghinezhad et al. 2023).

Spectral data of three pear varieties were analyzed
using four different algorithms for assessing their
firmness and soluble solids content (SSC). The PLS
and SPA-PLS models were used to predict firmness
and SSC, while Fisher LDA was used to discriminate
between varieties. The most effective method turned
was SPA-PLS with a correlation coefficient (R?)
of 0.9977 for firmness and 0.9924 for SSC. The accu-
racy of variety classification was 95.56% using Fish-
er LDA. SPA-PLS models had lower RMSEP values
than PLS models, 0.062 653 for firmness and 0.03175
for SSC (Li et al. 2016).

An electronic nose (E-nose) can predict the firm-
ness and SSC of the Xueqing’ pear variety with high
accuracy. The models achieved standard error of pre-
diction (SEP) values of 0.41 for SSC with a correla-
tion coefficient of 0.93 and SEP values of 3.12 with
a coefficient of 0.94 for penetration force (CF). This
method is more accurate than multiple linear regres-
sion (MLR), but low correlation with the E-nose sig-
nal was observed for acidity (Zhang et al. 2008).

The CARS-SPA method in combination with a hy-
perspectral imaging system is effective for the deter-
mination of SSC and firmness. A total of 160 pear
samples were analyzed. The PLS method was used
to analyze the spectral data. The correlation coef-

ficient and RMSEP for the CARS-SPA-PLS models
were 0.876, 0.491 for SSC, and 0.867, 0.721 for firm-
ness (Fan et al. 2015a).

The joint use of CARS and SPA methods for effec-
tive variable selection significantly improved the pre-
dictive ability of calibration models for determining
soluble solids content (SSC) and pear firmness (Fan
et al. 2015b).

Subsequent studies focused on predicting the SSC
content in pears and classifying surface positions (il-
luminated and shaded sides) using spectral data. Dif-
ferent types of models (specific model for each posi-
tion, global models for all positions, average spectral
model) and different spectral regions (550-950 nm,
550-780 nm, 780-950 nm, 550—700 nm) were used.
In the measurement of ‘Korla’ pears, the best predic-
tion of SSC content was obtained using the model
based on effective wavelengths (EWs) for each pear
position, with a correlation coefficient of the predic-
tion set (RPre) of 0.9408 for the illuminated side and
0.9463 for the shaded side. The classification model
based on 68 EWs selected from the range of 550-
950 nm achieved a correct classification of 97.78%
in the calibration set and 96.67% in the prediction
set. The accuracy of predicting SSC content and clas-
sifying surface positions is influenced by the surface
characteristics of pears, especially the skin colour
(Tian et al. 2018).

Near-infrared spectroscopy (NIR) is also used
in fruit variety control and identification of fruit
varieties. The study by Li et al. (2016) investigated
the use of NIR spectroscopy to distinguish varie-
ties. The results showed that NIR spectroscopy is
able to distinguish different varieties based on their
chemical profiles.

NIR spectroscopy provided 100% accuracy in iden-
tifying ‘Zaosu’ and ‘Dangshansuli’ varieties. The pre-
diction of soluble solids content (SSC) and titratable
acidity for the ‘Dangshansuli’ variety achieved a re-
sidual predictive deviation (RPD) of 3.272 and 2.239,
surpassing the predictive model for the “Zaosu’ vari-
ety (RPD: 1.407 and 1.471) (Lu et al. 2022).

Using interval partial least squares and covariate
selection, the bias was reduced from 1.31% to 0.19%
for moisture content (MC) and from —0.62% to 0.07%
for SSC, and the root mean square error of predic-
tion (RMSEP) from 1.44% to 0.58% for MC and from
0.90% to 0.63% for SSC (Mishra et al. 2021).

For ‘Huangguan’ pears, the prediction model
for phosphorus content in pulp and peel was signifi-
cantly successful, achieving values of R?=0.843 and
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RPD = 1.857 (pulp) and R? = 0.991 and RPD = 7.470
(peel) in the calibration set, and R* = 0.989 and
RPD = 7.041 (pulp) and R? = 0.974 and RPD = 4.414
(peel) in the validation set (Li et al. 2023).

Visible and near-infrared (VIS/NIR) spectroscopy
allows prediction of fruit juiciness, using various
methods of spectral preprocessing. A spectrometer
with wavelengths of 650—1100 nm was used to col-
lect spectra. The PLS model based on 19 charac-
teristic variables processed by the linear regression
correction combined with spectral ratio (LRC-SR)
method achieved the best results, reaching an exter-
nal validation coefficient of determination (R?) of 0.93
and a root mean square error of validation (RMSEV)
0f 0.97% (Wang et al. 2020).

In the field of identification of physiological defects
in fruit, the method of hyperspectral image analy-
sis in the infrared spectrum (950-1 650 nm) is ap-
plied together with a classification algorithm based
on the F-value. This method allowed the detection
of bruises on pears with an accuracy of up to 92% due
to the optimal ratio of wavelengths (1 074 nm and
1 016 nm: R1074/R1016) (Lee et al. 2014).

The studies by Han et al. (2006) and Hao et al. (2023)
showed high accuracy in the detection of browncore
on pears using NIR spectroscopy, which is important
for their quality assessment.

For online and dynamic browning detection,
the Ocean Optics INC, QE65Pro spectrometer
with wavelengths of 361-1 165 nm and a spec-
tral resolution of approximately 0.8 nm was used.
The data was analyzed using partial least squares
discriminant analysis (PLS-DA), support vector ma-
chine (SVM) method, and 1D convolutional neural
networks (1D-CNN). The results show 100% accu-
racy in distinguishing browning pears from healthy
samples for 1D-CNN models, with PLS-DA achiev-
ing 97.32% and SVM achieving 98.66% accuracy
(Hao et al. 2023).

Stone fruits

Plums. Several studies focus on the application
of NIR spectrometry for quality assessment of tem-
perate fruit. Parameters such as sugar content, acid-
ity, and firmness, are the subjects of research (Paz
et al. 2008; Louw, Theron 2010; Li et al. 2017; Vlaic
et al. 2018; Guo et al. 2022; Fodor et al. 2023).

One study conducted by Vlaic et al. (2018) focused
on the quantification of individual sugars in plum
juice using HPLC and FT-MIR methods, with sugar
contents ranging from 0.26% to 3.73% for fructose,
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1.43% to 1.10% for glucose, and 0.01% to 10.19%
for sucrose.

Research by Paz et al. (2008) used NIR spectrom-
etry to develop calibration models for different vari-
eties of plum (Prunus salicina L.). For total soluble
solids (SSC), SECV was 0.77 °Brix and R? was 0.83,
while for firmness, SECV was 2.54 N and R*was 0.52.

Costa and de Lima (2013) conducted a study to pre-
dict the soluble solids content (SSC) and pH, where
the correlation coefficient (R?) was 0.95 and 0.90 and
the root mean square error of prediction (RMSEP)
was 0.45 and 0.07, respectively.

The study by Meng et al. (2021) investigated hyper-
spectral imaging technology with chemometric algo-
rithms was examined. The CARS-MLR model was the
best for predicting SSC and firmness, with R* values
above 0.9 and 0.6 and RPD values above 3.7 and 1.8.
Specifically, the values for SSC were (R* = 0.93, RM-
SEP = 0.57%, RPD = 3.73) and for firmness (R* = 0.69,
RMSEP = 0.63 kg/cm2, RPD = 1.81).

Canteri et al. (2019) studied use of infrared spec-
troscopy combined with multivariate analysis to eval-
uate the main components of cell walls of 29 plant
species. It achieved excellent predictions (R* > 0.9
and RPD > 3.0) for alcohol insoluble solids (AIS) and
the content of different components, such as arab-
inose, glucose, non-cellulosic glucose, neutral sugars,
methanol, and starch in AIS samples.

In another research (Louw, Theron 2010), Fou-
rier transform near-infrared (FT-NIR) reflectance
spectroscopy (800-2700 nm) was used to develop
multivariate predictive models for evaluating total
soluble content (TSS), total acidity (TA), sugar-ac-
id ratio, firmness, and weight in three plum varie-
ties. R? values between 0.817 and 0.959 and RMSEP
0.453-0.610% Brix were obtained for TSS, while,
R? values 0.608-0.830 and RMSEP 0.110-0.194%
malic acid were obtained for TA. The sugar-acid
ratio reached R? values of 0.718-0.896 and RMSEP
0.608-1.590. Firmness had R? values of 0.623-0.791
and RMSEP 12.459-22.760 N, while weight had R*
values of 0.577-0.817 and RMSEP 7.700-12.800 g.
The ‘Pioneer’ and ‘Laetitia’ variety models had better
predictive ability than the ‘Angeleno’ model for all
evaluated parameters. Multivariate models had
higher R? but also higher prediction errors for TSS,
TA, and sugar-acid ratio.

Apricots and peaches. Several studies have con-
firmed the use of NIR spectroscopy for to evalu-
ate of the quality of apricots and peaches (Bureau
et al. 2010; Rong et al. 2020; Sun et al. 2021; Huang
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et al. 2022; Yang et al. 2022). Guan et al. (2022)
used a SACMI NIR spectroscopy analyzer (800—
2 600 nm) to develop a model to evaluate the internal
quality of ‘Shenzhou’ peach variety. The correlation
results were for SSC: R* = 0.79, P < 0.01, SEP = 0.47;
for firmness: R*> = 0.47, P < 0.01, SEP = 2.01; and
for pH: R? = 0.40, P < 0.01, SEP = 0.14.

Ozdemir et al. (2019) evaluated the quality
of ‘Hacihaliloglu’ and ‘Kabaast” apricots using spec-
trometers in the range of 12 000 to 4 000 cm™* (NIR)
and 4 000 to 650 cm™' (MIR). Predictive models
for SSC had Rp® between 0.827 and 0.913, RMSEP be-
tween 1.43 and 1.85, and RPD between 2.42 and 3.39.
For TA, the monocultivar models did not give accu-
rate results, but the multicultivar model was more ac-
curate (Rp* = 0.701, RMSEP = 0.99, RPD = 1.84).

Quality analysis of apricot fruit was carried out
using NIR (800-2500 nm) on intact fruit and MIR
(4 000-650 cm™) on pulp samples. The results were
acceptable for SSC using NIR and for SSC and TA us-
ing MIR (Bureau et al. 2012a).

In the study by Berardinelli et al. (2010) of the qual-
ity of apricots (variety ‘Bora’) was evaluated using FT-
NIR reflectance spectroscopy in the range of 12 000
to 4 000 cm™!. Apricot spectra were classified with
an average success rate of 87% (range: 80% to 100%).
Testing validation of PLS models showed R* values
up to 0.620, 0.863, 0.842, and 0.369 for fruit firmness
(FF), SSC, A, and TA, respectively.

For real-time measurements, the fruit was scanned
on trees under field conditions. Optimization used
an integration time of 30 ms and a wavelength range
of 670—1 000 nm for SSC prediction, while a 20 ms
integration time and the same wavelength range were
ideal for pH and TA prediction due to the lowest RM-
SECYV. The resulting models achieved R* and RMSEP
values: 0.66 and 0.86 “Brix (SSC); 0.79 and 0.15 (pH);
0.71 and 1.91% (TA) (Posom et al. 2020).

NIR models on whole fruit achieved predictive er-
rors of 9.2% (SSC) and 16.5% (TA). In the case of MIR
models on pulp samples, the error decreased to 6.1%
(SSC) and 8.6% (TA) (Bureau et al. 2012b).

Models were developed for individual apricot va-
rieties and tested as global ones, combining various
varieties. The accuracy of SSC prediction was RM-
SECV 0.67 to 1.1 °Brix with R values of 0.88 to 0.96.
Fruit firmness was predicted with different accuracy
depending on the variety, with RMSECV 6.2-13%
(R values 0.85-0.92) for ‘Kioto’ and ‘Harostar’ variet-
ies, but with insufficient accuracy (RMSECV = 24%)
for the ‘Bergarouge’ variety. TA predictions had RM-

SECV from 0.79 to 2.61 g/100 mL and R values from
0.73 to 0.97 (Camps, Christen 2009).

The objective was to implement rapid and reli-
able methods for determining the optimal harvest
time using a DA-meter and a NIR analyzer. Opti-
mized curves showed high predictive ability for TA,
SSC, and pH with R? in the range of 78.57-80.56.
More work is needed to develop models for firmness
(R? = 38.53), and further research is needed to better
adapt data from penetrometers or other devices mea-
suring pulp texture (Ciacciulli et al. 2018).

The study evaluated the use of Vis/NIR hyperspec-
tral imaging (400 to 1000 nm) for predicting flesh
firmness (FF) and SSC in apricots during storage
(11 days). The PLS method achieved R (test set) val-
ues up to 0.85 (RMSEP = 1.64 N) for FF and 0.72 (RM-
SEP = 0.51 °Brix) for SSC. For ANN, the best results
were obtained for FF (R?> = 0.85, RMSEP = 1.50 N)
(Benelli et al. 2022).

In this study, a commercial Vis/NIR spectrometer
was used to determine the soluble solids contents
(SSC), dry matter concentration (DMC), and flesh
firmness (FF) in varieties of peaches, apricots, and
Japanese plums. Models, based on the second deriva-
tive of absorbance in the 729-975 nm spectral region,
accurately predicted SSC and DMC (chv > 0.75), but
not FF (R? ., < 0.75) (Scalisi, O’Connell 2021).

In another study, laser light backscatter imag-
ing of was used to predict the quality of apricots
during ripening. A high correlation was found be-
tween the features extracted from the images and
the quality parameters of apricots, with the artificial
neural networks (ANN) modelling giving better re-
sults than the partial least squares (PLSR) method.
The highest R? values and the lowest RMSE of cross-
validation were achieved by the ANN for firmness
and total soluble solids (TSS), with RZCV = 0.974,
RMSECV = 3.482 and R’ = 0.963, RMSECV =
1.146 (Mozaffari et al. 2022).

Calibration methods have also been developed
that relate physical parameters obtained by standard
methods to spectral measurements in the range of 780
to 2 500 nm using PLS. For the maximum strength
according to Magness-Taylor (MT), R* values of 0.82
(root mean square error of estimation (RMSEE) =
4.45) in calibration and 0.80 (RMSECYV = 4.68) in val-
idation were achieved for the apricot variety from
multiple harvests (Buyukcan, Kavdir 2017).

The ATR-FTIR method was also tested for pre-
dicting the internal characteristics of peaches, such
as sweetness and acidity. The best results were ob-
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tained for SSC and TA, with RMSECV ranging from
5.8 to 8.7% for SSC and from 5.9 to 8.0% for TA, de-
pending on the samples (Bureau et al. 2013).

A total of five PLS models using NIR and MIR
spectra were developed on 300 apricot samples and
calibrated for total phenols (TPs), flavanols (FLs), ca-
rotenoids (TCs), and antioxidant capacity (AC). All
models achieved high correlations, with coefficients
greater than 0.95. Excellent results were recorded
for TPs and FLs (Rp* = 0.99, RMSEP = 0.73 g/kg
GAE, RPD = 12.0 and Rp® = 0.99, RMSEP = 0.95 g/kg
GAE, RPD =9.9 for MIR and NIR models respective-
ly, Rp* = 0.99, RMSEP = 0.99 g/kg CAT, RPD = 8.5
and Rp? = 0.98, RMSEP = 1.10 g/kg CAT, RPD = 6.4
for MIR and NIR models respectively). MIR and NIR
models for TCs showed solid prediction (Rp? = 0.98,
RMSEP = 0.01 g/kg P-carotene, RPD = 6.5 and
Rp* = 0.95, RMSEP = 0.01 g/kg B-carotene, RPD =
4.5 for MIR and NIR models respectively) (Amori-
ello et al. 2019).

Fruit firmness, soluble pectin content, and of meth-
anol and succinate absorption in peaches were moni-
tored with coefficients of determination R* of 0.80,
0.82, and 0.90 respectively, using PLS regression on
spectra of wavelengths from 500 to 1 000 nm. Chang-
es in the amount of pigments (especially chlorophyll)
in the 500 to 560 nm and 630 to 690 nm regions were
also used to construct models (Uwadaira et al. 2018).

Hyperspectral imaging was used to analyze light
scattering from ‘Red Haven’ and ‘Coral Star’ peach
varieties for to estimate fruit firmness, with an av-
erage coefficient of determination R* above 0.990
for a two-parameter Lorentzian function. The wave-
length of 677 nm wavelength had the highest corre-
lation with fruit firmness, with R? values of 0.77 and
0.58 for ‘Red Haven' and ‘Coral Star’ respectively
(Lu, Peng 2006).

A method combining hyperspectral imaging and
machine learning was proposed to identify the bruis-
ing process in yellow peaches, with XGBoost model
accuracies of 77.5%, 87.5%, and 90.0% for spectral,
image, and combined data, respectively. To simplify
the model, the CARS algorithm was used for wave-
length selection from normalized spectral data,
combined with image data, with an overall XGBoost
model accuracy of 95.0% (Li et al. 2022).

Hyperspectral imaging for peach defects detection
faces challenges due to fruit colour variability, similar-
ity of defects and stems, and uneven light distribution
on the surface. The implementation of a two-stage
multivariate analysis process (Monte Carlo-Unin-
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formative Variable Elimination and successful pro-
jections algorithm) in the spectral domain allowed
the identification of artificial defects and the selec-
tion of discriminative wavelengths (DW). The re-
sulting classification accuracy of 93.3% for 120 sam-
ples demonstrated the effectiveness of this method
(Zhang et al. 2015).

Further investigation focused on the quantita-
tive analysis of damage in yellow peaches using hy-
perspectral technology and mechanical parameters.
The key features were the absorbed energy and
the maximum contact force, as indicated by the R?
values (0.83 and 0.90). The SNV-CARS-PLSR predic-
tion model achieved optimal results for these meas-
urements (Cozzolino et al. 2022).

Structured reflectance image spectrometry (SIRI)
was used to detect early-stage fusarium infection.
The method used of a multispectral SIRI system and
seven wavelengths ranging from 690 nm to 810 nm.
The application of a convolutional neural network
(CNN) for image classification achieved a high de-
tection success rate of 98.6%, with a 97.6% success
rate for early infected peaches with difficult-to-detect
symptoms (Sun et al. 2019).

In the recent research, hyperspectral reflectance
spectrometry (400-1 000 nm) was used to evaluate
and classify three peach diseases. The deep neural
network model deep belief network (DBN) outper-
formed the partial least squares discriminant analy-
sis model (PLSDA), achieving accuracies of 82.5%,
92.5%, and 100% for mild, moderate, and severe de-
cay respectively. Model optimization of SPA-PLSDA
from 494 to six features showed improved results and
industrial applicability (Sun et al. 2018b).

A hyperspectral imaging system with a mobile in-
spection platform enables comprehensive imaging
of the peach for the identification of diseases caused
by Rhizopus stolonifera. Three monochromatic imag-
es (709, 807, and 874 nm) were selected using statis-
tical methods and an image segmentation algorithm
to locate infected areas. Peaches were classified based
on the degree of affliction (healthy, slightly afflicted,
moderately afflicted, and severely afflicted) with de-
tection accuracies of 95%, 66.29%, 100%, and 100%
for each category respectively. When reduced to two
categories (healthy and rotting), the classification
achieved 100% accuracy. This system provides ef-
fective identification of afflicted areas and is suitable
for online monitoring (Sun et al. 2018a).

Remote sensing can reduce the cost of pest moni-
toring in orchards. An assessment of mite damage de-
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tection in peach trees identified eight spectral regions
on leaves and two regions (blue and red) that corre-
lated with mite damage. These results were validated
by calculating normalized difference indices of red
and blue radiation from six multispectral aerial imag-
es, with a correlation between index values and mite
damage (R? = 0.47) (Luedeling et al. 2009).

Sweet and sour cherries. Near-Infrared spectrom-
etry has demonstrated the ability to effectively pre-
dict sweet cherry and sour cherry attributes such
as sugar content, acidity, firmness, and colour, (Over-
beck et al. 2017; Wang et al. 2018; Li et al. 2018b;
Cheltpinski et al. 2019; Fodor 2022).

In this study, a Cherry-Meter device measuring
the index of absorbance difference (IAD) was used,
and its reliability as a maturity indicator was verified
by correlating it with attributes such as peel colour
intensity, anthocyanin content, and soluble solids
content (SSC) in the fruit (Nagpala et al. 2017).

Eleven hyperspectral images of 550 fruits in the
range of 874-1 734 nm were obtained and compared
with the SSC and pH values obtained by standard
methods. The genetic algorithm multiple linear re-
gression (GA-MLR) method was chosen as the final
modelling technique with a ratio of the standard de-
viation of the prediction set to the standard deviation
of the prediction error of 2.7 for SSC and 2.4 for pH.
Linear discriminant analysis achieved a correct clas-
sification of 96.4% (Li et al. 2018b).

The study also developed NIR spectroscopy models
for a handheld device in the spectral range of 729-
975 nm, which were found to be accurate and robust
for sweet cherries. The determination coefficients
(R*) for model calibration were 0.922—0.946 for SSC
and 0.910-0.933 for dry matter content (DMC),
with calibration errors of 0.612-0.792 for SSC and
0.687-0.911% for DMC. External validation showed
the models to be reliable for ‘Chelan’ and ‘Bing’ varie-
ties, with R* values of 0.726—0.891 for SSC and 0.670—
0.725 for DMC (Escribano et al. 2017).

Fourier transform near-infrared spectrosco-
py (FT-NIR) was used to analyze of the ripeness
of sweet and sour cherries, with reference val-
ues of titratable acidity (A), soluble solids content
(SSC), total anthocyanin content (TA), and a cal-
culated ripeness index (SSC/A = MI). Correlations
were validated by sevenfold cross-validation and
test validation (Fodor 2022).

The study demonstrates the application of sen-
sor technology to non-destructively determine
the optimal harvest date (OHD) of sweet cherries.

Changes in colour, quantified by NDVI (normalized
differential vegetation index) and NAI (normalized
anthocyanin index), were used to categorize cherry
ripening. The OHD model correlated with the mo-
ment when the NDVI exceeded zero and the first
derivative of the NAI asymptotically approached
zero (Overbeck et al. 2017).

Soft independent modelling of class analogies
(SIMCA) was used to detect differences in fruit qual-
ity in modified atmosphere (MAP) as a function
of washing, with prediction error rates between 0 and
0.5 (Szabo et al. 2023).

The use of visible and near-infrared (Vis-NIR) re-
flectance spectroscopy to identify damage of sweet
cherries achieved a classification accuracy of 93.3%
when using the LS-SVM model (Shao et al. 2019).

A spectrometer (800—2 600 nm) evaluated different
types of sweet cherries according to the pit content,
with the binary model achieving an overall accu-
racy of 98%. Accuracy dropped to 96% when limited
to four significant features and was lowest when sepa-
rating fragment classes (Liang et al. 2017).

Small fruits

Blueberries. NIR spectrometry has been stud-
ied as a tool to evaluate the quality of blueberries,
especially sugar content, acidity, and firmness (Lei-
va-Valenzuela et al. 2013; Jiang, Takeda 2016; Bai
et al. 2022).

Bai et al. (2022) focused on its use to estimate
the soluble solids content in blueberries, using a com-
bined model calibration strategy. The use of global
modelling methods, dynamic orthogonalization pro-
jection (DOP) and slope/bias correction (SBC), re-
duced the RMSEP values of the model by up to 55.9%
for seasonal variables (‘Bluecrop’-2014), 45.8% for va-
riety variables (M2-2015), and 9.3% for variety vari-
ables (Duke 2015).

Leiva-Valenzuela et al. (2013) used hyperspectral
imaging technique to predict blueberry firmness
(R?> = 0.87) and soluble solids content (R* = 0.79).
A pushbroom hyperspectral imaging system was used,
to acquire spectra in the 500—1 000 nm range.

According to Goisser et al. (2021), cross-validation
models achieved values of up to 0.94 for evaluating
moisture content and up to 0.95 when evaluating sug-
ar content in blueberries. Three different commercial
food scanners were used for measurement.

Jiang and Takeda (2016) conducted experiments on
blueberry samples (varieties ‘Camellia, ‘Rebel; ‘Star;
‘Bluecrop; ‘Jersey, and ‘Liberty’) for hyperspectral
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image analysis, firmness measurement, and human
evaluation. They achieved accuracy rates of over 94%,
92%, and 96% on the training set, independent test
set, and combined set, respectively.

Huang et al. (2020b) investigated the potential
of hyperspectral imaging for differentiating early dis-
ease in blueberries. The effective spectral range (400—
1 000 nm) combined with an autoscaling method
achieved recognition rates of 100% for healthy blue-
berries and 99% for blueberries with early disease.

Sinelli et al. (2011) utilized NIR spectra to moni-
tor changes caused by osmotic treatments. Spectral
differences reflected the major molecular changes as-
sociated with osmotic dehydration, and two-dimen-
sional correlation analysis of spectral data was also
performed to examine the variation of major compo-
nents (sugars and water).

Raspberries. Detection of quality and health
of raspberries can be significantly improved thanks
to advanced technologies. NIR spectrometry can ef-
fectively predict even phenolic and carotenoid con-
tent (Toledo-Martin et al. 2018).

Research by Rodriguez-Pulido et al. (2017) showed
that the partial least squares regression method, to-
gether with image analysis data, enabled the pre-
diction of raspberry chemical properties with co-
efficients of determination (R?) up to 0.75. Colour
data provided the most accurate predictions for total
anthocyanins.

In this study, three genotypes of Rubus idaeus were
subjected to biotic stress caused by the pathogen Phy-
tophthora rubi and the pest Otiorhynchus sulcatus,
as well as abiotic stress caused by limited soil water
availability. Significant differences in plant biologi-
cal characteristics and canopy reflectance spectrum
were observed among genotypes and stress condi-
tions. The most notable differences were observed
when monitoring the reflectance ratio at wavelengths
of 469 and 523 nm, where a significant interaction be-
tween genotypes and stress conditions was recorded
(Williams et al. 2023).

Strawberries. NIR spectrometry offers advantag-
es in the analysis of rapidly deteriorating fruit, such
as strawberries. Sugar content, acidity, and firmness
(Mancini et al. 2020; Agulheiro-Santos et al. 2022) are
key parameters for rapid assessment. Fourier trans-
form NIR spectrophotometry (FT-NIR mod. Nicolet
iS10, Thermo, Waltham, MA, USA) provides high
correlation values R? up to 0.87 and standard pre-
diction errors 0.84 °Brix when predicting the con-
tent of soluble solids content (SSC) in strawberries
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(Mancini et al. 2023). The partial least squares (PLS)
method for predicting SSC content was found to be
the most effective and was also robust even for pre-
dicting fruit firmness (Mancini et al. 2020).

Seki et al. (2023) developed a method to visualize
sugar distribution in the flesh of white strawberries
using hyperspectral imaging in the NIR spectrum
(913-2 166 nm), achieving RMSEP and R* values
of 0.576 and 0.841.

Wilodarska et al. (2019) used NIR spectroscopy
for the analysis of strawberries and juices and achieved
high precision with R? values of up to 0.9277, 0.5755,
and 0.8207 for the calibration, validation, and pre-
diction model when predicting SSC. For prediction
of TPC, R* = 0.834 and RMSEP = 130.8 mg GA/L
were obtained using NIR spectra of strawberries, or
R* = 0.844 and RMSEP = 126.7 mg GA/L using UV-
VIS-NIR spectra of juices.

In the spectroscopic and physicochemical analy-
sis of strawberries of the ‘Victory’ variety, predic-
tive models for titratable acidity, colour, and texture
achieved low precision. On the contrary, NIR quanti-
tative predictive analysis of TSS achieved high accu-
racy when applying spectral preprocessing with de-
termination coefficients of 0.9277, 0.5755, and 0.8207
for the calibration, validation, and prediction model,
using a seven-factor PLS analysis (Agulheiro-Santos
et al. 2022).

Another part of the study, focused on the classifica-
tion of strawberries according to storage time, used
the Support Vector Machine (SVM) method with
multiplicative scatter correction, achieving 100% ac-
curacy. Then, a partial least squares regression mod-
el (PLS) was developed to predict the storage time
of strawberries, with a prediction determination co-
efficient (R%) of 0.9999 and prediction error (RMSEP)
of 0.0721. Ten key wavelengths, obtained by eliminat-
ing uninformative variables, were used in the SVM
model, which achieved R?> of 0.9943 and RMSEP
of 1.3213 (Wenga et al. 2023).

In another study, aquaphotomics and NIR spectros-
copy were used to monitor changes in strawberries
during chilled storage in a supercooled fridge (SCF)
and a control fridge (CF). Aquaphotomic analysis
showed that NIR spectra effectively reflected changes
in strawberry condition of during storage and allowed
predicting of storage time (Muncan et al. 2022).

Yet another study used visible and NIR spectros-
copy (Vis/NIR) for rapid evaluation of storage time
and prediction of post-harvest quality of strawberries.
The PLS-DA method achieved classification accu-



Horticultural Science (Prague), 51, 2024 (3): 169-188

Review

https://doi.org/10.17221/85/2023-HORTSCI

racy of 93.3%—-97.4% depending on the speed of fruit
movement (0.05, 0.10, and 0.15 m/s) based on selected
wavelengths obtained using the competitive adaptive
reweighted sampling (CARS) method. For predict-
ing the soluble solids content (SSC) in strawberries,
the PLS method with CARS achieved a determina-
tion coefficient (R%) of 0.733, root mean square error
of prediction (RMSEP) of 0.699 °Brix, and residual
prediction deviation (RPD) value of 1.96 at a fruit
movement speed of 0.10 m/s (Shen et al. 2018).

In the study by Yeh et al. (2016), hyperspectral and
multispectral imaging techniques were used to diag-
nose the stages of anthracnose infection in strawber-
ry leaves. Three methods of hyperspectral imaging
analysis, i.e., spectral angle mapper (SAM), stepwise
discriminant analysis (SDA), and independently de-
veloped correlation method (CM), achieved average
accuracies over 80% in classifying two stages (healthy
and symptomatic). The SDA method achieved an av-
erage accuracy of 93% for a two-stage classification.
For a three-stage classification, the 551, 706, 750,
and 914 nm wavelengths achieved 80% accuracy us-
ing the PLS regression method for standard wave-
length selection.

Detection of grey mold on strawberry leaves
was performed using hyperspectral images and
the development of three machine learning models:
extreme learning machine (ELM), support vector
machine (SVM), and K-nearest neighbour (KNN).
Models based on optimized wavelengths (OWs) and
vegetation indices (VIs) achieved classification ac-
curacies of up to 93.33%. Although the model using
texture features (TFs) showed lower performance,
the combination of different features (OWs, VIs,
TFs) significantly improved the accuracy of gray
mold detection in strawberries, allowing accurate
identification of infected leaves at the early stages
(Wu et al. 2023).

Another study examined the application of near-
infrared spectroscopy on berry fruit extracts
for predicting total phenol content (TPC) and an-
tioxidant activity (AoA indicators), such as DPPH
radical quenching, Briggs-Rauscher reaction inhi-
bition time (IT), and relative antioxidant capacity
(rac) of the Partial least squares (PLS) models were
developed to verify the relationship between NIR
spectra of berry fruit and TPC and AoA. The de-
termination coefficients (R?) exceeded 0.84 and
residual prediction deviation (RPD) values ranged
from 1.8 to 3.1, confirming the sufficient accuracy
of the validated PLS models (Kljusuri¢ et al. 2016).

Grape wine. The use of NIR spectrometry to as-
sess the maturity, sugar content, and acidity of grapes
has been the subject of several studies (Daniels
etal. 2019; Ping et al. 2023). Spectrometry is also used
to evaluate the quality and composition of grapes and
wines (Guidetti et al. 2010; Poblete-Echeverria et al.
2020; van Wyngaard et al. 2021) and even to identify
and authenticate wines (Ferndndez et al. 2007; Geana
et al. 2019; Parpinello et al. 2019).

Poblete-Echeverria et al. (2020) introduced NIR
spectroscopy and artificial neural networks (ANN)
as an alternative to traditional methods (especially
partial least squares - PLS) for evaluating the quality
of table wine. ANN models based on NIR data agreed
well with the content of total soluble solids (TSS), ti-
tratable acidity (TA), and TSS/TA ratio.

Ping et al. (2023) applied the method of visible
near-infrared spectral (Vis-NIR) technology method
for rapid and non-destructive detection of changes
in the qualitative parameters of grapes during matu-
ration. The SSC model obtained coefficients of deter-
mination for the calibration (R?cal = 0.97) and predic-
tion (R*pre = 0.93) set, RMSEC and RMSEP were 0.62
and 1.27, and RPD 4.09. For TA, R%cal, R*pre, RMSEC,
RMSEP, and RPD were 0.97, 0.94, 0.88, 1.96, and 4.55.

Daniels et al. (2019) evaluated the possibility of de-
termining the main maturity parameters of table
grapes on intact samples using FT-NIR spectroscopy
and contactless measurement. For the parameters
TSS, TA, TSS/TA, pH, and alternative parameter for
determining the palatability (BrimA), calculated as
TSS-k x TA, latent variables (LVs) were 21, 23, 5, 7,
and 24, Rzp =0.71,0.33,0.57,0.28, and 0.77, and RM-
SEP = 1.52,1.09, 7.83, 0.14, and 1.80.

Basile et al. (2022) developed multivariate models
using ANN and PLS regressions and obtained good
predictions for TSS and firmness (R? 0.82 and 0.72).
Qualitative models were obtained for hardness and
chewiness (R? 0.50 and 0.53). However, no satisfacto-
ry calibration model was obtained for cohesiveness.

Goisser et al. (2021) achieved cross-validation val-
ues (R?) up to 0.92 for dry matter content and up
to 0.95 for sugar content in table grapes, using three
commercially available food scanners: SCiOTM,
E-750, and H-100F.

Comparison of results obtained using NIR spec-
trometry with traditional analytical methods.
According to a comparison made by Workman and
Weyer (2012), NIR spectrometry appears to be a fast
and accurate analytical tool that eliminates the need
for complex sample preparation and achieves re-
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sults comparable to traditional methods. The study
by Zhang et al. (2019) confirmed this fact and high-
lighted the advantages of NIR spectrometry in the
context of increasing pressure for rapid and efficient
fruit quality control. Slaughter and Abbott (2004) and
Butz et al. (2005) also pointed out the growing im-
portance of NIR spectrometry in the sphere of fruit
quality control in response to the increasing demand
for high quality fruit. Research by Scalisi et al. (2021)
also showed that NIR spectrometry provides fast and
accurate results that can help improve fruit qual-
ity control. The study by Amoriello et al. (2019) also
demonstrated the efficiency of NIR spectrometry
in determining the antioxidants content of in fruit,
which is a key indicator of its nutritional value.

DISCUSSION

Evaluation of current research on the use
of NIR spectrometry on temperate fruit. NIR
spectrometry is emerging as an effective tool
for evaluating the quality, maturity, and other pa-
rameters of temperate fruit. Li et al. (2018a) dem-
onstrated the use of this technology to identify
apple varieties using specific spectral characteris-
tics. Daniels et al. (2019) suggested its effectiveness
in determining sugar and acidity in grape wine,
while Mozaffari et al. (2022) confirmed its ability
to evaluate the ripeness of apricots.

The main advantage of NIR spectrometry is its
speed and non-invasiveness, which provides accurate
and reliable results. However, its accuracy depends
on the calibration of the instrument and the quality
of the reference data, as suggested by Nicolai et al.
(2007), Zhang et al. (2019), Bureau et al. (2013), Jiang
et al. (2022), Mareckova et al. (2022). This suggests
the need for further research to optimize and stan-
dardize this method.

From the analysis of the current research, it is clear
that there is a need to focus on the calibration and
validation of the models to achieve accurate results
(Louw et al. 2010; Jiang et al. 2022; Hao et al. 2023)
is apparent. We suggested that future studies should
include more types of fruit to further expand the ap-
plications of NIR spectrometry.

Compared with traditional analytical methods, NIR
spectrometry has proven to be an effective alternative
for rapid and noninvasive evaluation of fruit (Li et al.
2018b), and even genetically modified organisms
(Sohn et al. 2021). However, it is important to recog-

180

https://doi.org/10.17221/85/2023-HORTSCI

nize that the accuracy and reliability of this method
may be affected by the variability of fruit samples, in-
strument calibration, and the influence of the exter-
nal environment. These aspects are further areas for
future research.

Lietal. (2018a) demonstrated its usefulness for fruit
variety identification, and Li et al. (2018b) provided
a comparison with traditional analytical methods
for cherries evaluation, noting the comparable accu-
racy of both methods.

However, there are limitations and challenges as-
sociated with the use of NIR spectrometry on tem-
perate fruit, such as the variability in fruit properties,
the need for adequate instrument calibration, and
the consideration of external influences such as en-
vironment and storage conditions. Future research
should address these issues and focus on improving
the methods and technologies used in NIR spectrom-
etry for the temperate fruit assessment.

Identifying trends, limitations, and opportu-
nities for further development in this field. Re-
search on NIR spectrometry as applied to temperate
fruit reveals the considerable potential of this tech-
nique and its possible limitations. Important trends
in the field, including the growing interest in auto-
mation and rapid analysis, were highlighted in the
studies by Bureau et al. (2012a, 2012b) and Ali and
Hashim (2022). However, limitations related to the
variability of fruit characteristics, physical interfer-
ences, and the need for instrument calibration are
of considerable importance, as shown in the study
by Mishra et al. (2021).

Opportunities for further development include im-
proving sensors and detectors, using advanced che-
mometric methods, and integrating with other tech-
nologies such as image analysis. These opportunities
were illustrated in the studies by Rodriguez-Pulido
etal. (2017), Lietal. (2018b) and Li et al. (2022), which
explored the combination of NIR spectrometry with
image analysis and hyperspectral imaging for better
fruit classification.

The increasing use of advanced chemometric meth-
ods to analyze NIR spectrometry data was identified
as another significant trend, as shown in the stud-
ies by Lin and Ying (2009) and Vilvert et al. (2023).
Limitations associated with variability in the physical
properties of fruit and measurement geometry were
evaluated in Buyukcan and Kavdir (2017).

From the identified trends, limitations, and oppor-
tunities for further development, it follows that fu-
ture research should aim to develop innovative ap-
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proaches and techniques for efficient and reliable
fruit assessment using NIR spectrometry.

Recommendations for future research and ap-
plications of NIR spectrometry in fruit. Stan-
dardization and validation of methods are key
to the successful application of NIR spectrometry,
verifying its accuracy and reliability (Hao et al.
2023; Wu et al. 2023). Standardized procedures
for measurement and analysis ensure consistent
results and comparability between studies. Fur-
ther research should aim to optimize methods and
models for NIR spectrometry (Cadet et al. 2019;
Weijie 2021). Given the importance of data analysis
in NIR spectrometry, the development of chemo-
metric methods for spectral data should continue
(Meng et al. 2021; Yan et al. 2023).

Integration of NIR spectrometry with technolo-
gies such as image analysis, multispectral imag-
ing, artificial intelligence, or robotics could provide
a comprehensive solution (Luedeling et al. 2009; Yeh
et al. 2016; Cadet et al. 2019; Sun et al. 2019; Pandi-
selvam et al. 2022).

Efforts to develop portable and miniaturized in-
struments are important for rapid fruit quality mea-
surements (Pissard et al. 2021; Be¢ et al. 2022; Yan
et al.2023; Minas et al. 2023; Kalopesa et al. 2023).
Further development should aim at methods that al-
low the examination of the internal structure of fruit
(Guan et al. 2022; Yan et al. 2023).

It is also important to expand the application of NIR
spectrometry to the industrial level is also important
(Kumaravelu, Gopal 2015; Qu et al. 2015; Patel et al.
2016; Daniels et al. 2019; Grassi, Casiraghi 2022; Tsu-
chikawa et al. 2022).

Future research and applications of NIR spectrom-
etry to fruit should include expansion of applications,
integration with other technologies, development
of portable and miniaturized instruments, and stand-
ardization and validation of methods. These steps
could contribute to the further development and uti-
lization of NIR spectrometry in fruit evaluation.

CONCLUSION

Final recommendations. Further research
should focus on optimizing methods and cali-
brations to achieve greater accuracy and reli-
ability of analytical results (Jiang et al. 2022;
Mareckova et al. 2022). The use of advanced che-
mometric methods and machine learning holds

promise for improving the accuracy and reliability
of predictive analysis results and identifying new
fruit species (Kumaravelu, Gopal 2015; Poblete-
Echeverria et al. 2020; Meng et al. 2021; Kalope-
sa et al. 2023; Vilvert et al. 2023). Future research
should focus on optimizing methods and calibra-
tions of NIR spectrometry to achieve even more
accurate results (Hao et al. 2023; Wu et al. 2023).

The development of portable and mobile NIR
spectrometers will enable their use directly on farms,
in stores, or in fruit distribution centers. This will
allow for quick and practical quality and ripeness
checks on-site (Aline et al. 2023; Saeys 2023).

Summary of the main findings and results
of the review. NIR spectrometry has proven to be
an effective technique for the evaluation of tem-
perate fruit, providing information about chemical
composition, ripeness, and quality simultaneously,
providing comprehensive information (Rodriguez-
Pulido et al. 2017; Agulheiro-Santos et al. 2022;
Mozzaffari et al. 2022; Kalopesa et al. 2023) with-
out destroying the fruit, thus speeding up the eval-
uation process (Li et al. 2018b). Research confirms
its reliability and accuracy compared to traditional
analytical methods (Li et al. 2018b). Its potential
for process automation and efficiency improve-
ment in fruit farming is also evident (El-Mesery
et al. 2019; Saeys 2023).

In the context of future research, it is important
to continue developing calibrations and meth-
odologies that increase the accuracy and reliabil-
ity of analyses (Wu, Sun 2013; Huang et al. 2020a;
Hasanzadeh et al. 2022).

The development of new technologies and devices
is also an important aspect of further research (Yu
et al. 2016; Nagpala et al. 2017; Sohn et al. 2021).

Future research should aim to develop advanced
sensors, detectors, and light sources that would im-
prove sensitivity, resolution, and measurement stabil-
ity. Although NIR spectrometry provides valuable in-
formation for the evaluation of temperate fruit, there
is still room for further research and development.
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