Hort. Sci. (Prague), X:X | DOI: 10.17221/143/2024-HORTSCI

Degree of seedbed compaction and response of spinach (Spinacia oleracea L.) under different traffic treatmentsOriginal Paper

Esra Nur Gül ORCID...1, Emine Polat ORCID...1, Engin Özgöz ORCID...1, Naif Geboloğlu ORCID...1
1 Department of Biosystems Engineering, Faculty of Agriculture, Tokat Gaziosmanpasa University, Tokat, Türkiye
2 Department of Horticulture, Faculty of Agriculture, Tokat Gaziosmanpaşa University, Tokat, Türkiye

Soil compaction has negative impacts on plant productivity. Degradation of soil structure as a result of soil compaction can inhibit the development of plant roots and make it difficult for plants to take up water and nutrients. This can negatively affect plant growth and productivity. Compaction restricts plant root growth by increasing mechanical resistance, reducing oxygen uptake, and thus reducing crop yields as it inhibits plant development. In this study, the effects of soil compaction due to machinery traffic on the physical structure of soil, morphological characteristics and yield of spinach were investigated in Tokat, where vegetable farming is intensively practised. In the study, four different tractor traffic treatments [C – zero tractor traffic (control), T1 – 1 tractor traffic, T3 – 3 tractor traffic, T5 – 5 tractor traffic] were used. As traffic increased, the penetration resistance, bulk density, and porosity increased, and the lowest volume weight was obtained from the control treatment. Plant weight losses in T1, T3 and T5 treatments compared to the control treatment were 1.92%, 31.09% and 64.64%, respectively. The yield value, which was 62.0 t/ha in the C treatment, was determined to be 31.8 t/ha in the T5 treatment, representing a 48.70% decrease. The proper use of modern agricultural machinery plays an important role in preventing soil compaction and increasing plant productivity.

Keywords: penetration resistance; spinach marketable yield; spinach root diameter; tractor traffic

Received: July 26, 2024; Revised: March 18, 2025; Accepted: April 2, 2025; Prepublished online: October 16, 2025 

Download citation

References

  1. Abak K., Sari N., Pakyürek A., Güler Y., Onsinejad R. (1992): Ispanak'ta farkli ekim zamanlarinin ve ekim sikliğinin verim üzerine etkileri. In: Türkiye I. Ulusal Bahçe Bitkileri Kongresi. Bornova, İzmir, Ege Üniversitesi Ziraat Fakültesi, 1992: 93-96. (in Turkish)
  2. Aksakal E.L. (2004): Soil compaction and its importance for agriculture. Ataturk University Journal of Agricultural Faculty, 35: 247-252.
  3. ASTM (1982): Standard test methods for moisture relations using a 5.5 lb (2.5 kg) hammer and 12 inch (304.8 mm) drop. In: ASTM Standards in Building Codes. Philadelphia, 836-842.
  4. Battikhi A.M., Suleiman A.A. (1999): Effect of tillage system on soil strength and bulk density of vertisols. Journal of Agronomy and Crop Science, 183: 81-89. Go to original source...
  5. Baver L.D., Gardner W.H., Gardner W.R. (1972): Soil Physics. New York, John Wiley and Sons, Inc.
  6. Bengough A.G., Mullins C.E. (1990): Mechanical impedance to root growth: A review of experimental techniques and root growth responses. Journal of Soil Science, 41: 341-358. Go to original source...
  7. Bengough A.G., McKenzie C.J. (1994): Simultaneous measurement of root force and elongation of seedling pea roots. Journal of Experimental Botany, 45: 95-102. Go to original source...
  8. Beutler A.N., Centurion J.F., Roque C.G., Ferraz M.V. (2005): Optimal relative bulk density for soybean yield in Oxisols. Revista Brasileira de Ciência do Solo, 29: 843-849. Go to original source...
  9. Bilbro J.D., Wanjura D.F. (1982): Soil crusts and cotton emergence relationships. Transactions of the ASAE, 25: 1484-1489. Go to original source...
  10. Botta G., Jorajuria D., Draghi L. (2002): Influence of the axle load, tyre size and configuration, on the compaction of a freshly tilled clayey soil. Journal of Terramechanics, 39: 47-54. Go to original source...
  11. Botta G.F., Jorajuria D., Balbuena R., Rosatto H. (2004): Mechanical and cropping behaviour of direct drilled soil under different traffic intensities: Effect on soybean (Glycine max L.) yields. Soil and Tillage Research, 78: 53-58. Go to original source...
  12. Carter M.R. (1990): Relative measures of soil bulk density to characterize compaction in tillage studies on fine sandy loams. Canadian Journal of Soil Science, 70: 425-433. Go to original source...
  13. Chen G., Weil R.R. (2010): Penetration of cover crop roots through compacted soils. Plant Soil, 331: 31-43. Go to original source...
  14. Clark L.J., Barraclough P.B. (1999): Do dicotyledons generate greater maximum axial root growth pressures than monocotyledons? Journal of Experimental Botany, 50: 1263-1266. Go to original source...
  15. Colombi T., Torres L.C., Walter A., Keller T. (2018): Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth - A vicious circle. Science of the Total Environment, 626: 1026-1035. Go to original source... Go to PubMed...
  16. Cook A., Marriott C.A., Seel W., Mullins C.E. (1996): Effects of soil mechanical impedance on root and shoot growth of Lolium perenne L., Agrostis capillaris and Trifolium repens L. Journal of Experimental Botany, 47: 1075-1084. Go to original source...
  17. Czyż E.A. (2004): Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil and Tillage Research, 79: 153-166. Go to original source...
  18. Demiralay İ. (1993): Toprak Fiziksel Analizleri. Erzurum, Turkey, Atatürk Üniversitesi Ziraat Fakültesi Yayinlari. (in Turkish)
  19. Dexter A.R. (2004): Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120: 201-214. Go to original source...
  20. Ehlers W., Kopke V., Hesse F., Bohm W. (1983): Penetration resistance and root growth of oats in tilled and untilled loess soil. Soil and Tillage Research, 3: 262-275. Go to original source...
  21. FAO (2022): FAOSTAT, Crops and livestock products. Available at https://www.fao.org/faostat/en/#data/QCL (accessed February 14, 2024).
  22. Gomez A., Powers R.F., Singer M.J., Horwath W.R. (2002): Soil compaction effects on growth of young ponderosa pine following litter removal in California's Sierra Nevada. Soil Science Society of America Journal 66: 1334-1343. Go to original source...
  23. Gupta S.C., Allmaras R.R. (1987): Models to assess the susceptibility of soil with excessive compaction. Advances in Soil Science, 6: 65-100. Go to original source...
  24. Hakansson I., Medvedev V.W. (1995): Protection of soils from mechanical overloading by establishing limits for stresses caused by heavy vehicles. Soil and Tillage Research, 35: 85-97. Go to original source...
  25. Hamza M.A., Anderson W.K. (2005): Soil compaction in cropping systems. A review of the nature, causes and possible solutions. Soil and Tillage Research, 82: 121-145. Go to original source...
  26. Hoffmann M. (1984): Beetkultur gegen Bodenverdichtung. Landtechnik, 3: 112-113. (in German)
  27. Kalkan P. (2019): Topraksiz tarimda farkli kati ortamlarin ispanak yetiştiriciliği üzerine etkileri. Antalya, Türkiye, Yüksek Lisans Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Toprak Bilimi ve Bitki Besleme Anabilim Dali. (in Turkish)
  28. Karakaplan S. (1982): Değişik Nem ve Basinçta Sikiştirmanin Topraklarin Hacim Ağirliği, Penetrasyon ve Permeabilite Değerlerine Etkileri. Erzurum, Turkey, Atatürk Üniversitesi Basimevi. (in Turkish)
  29. Kruger W. (1971): Effect of different degrees of soil compaction on soil physical properties and plant growth. Soil and Fertilizers, 34: 116-121.
  30. Lhotskŭ J., Váchal J., Ehrlich J. (1984): Soustava opatĝení k zúrodòování zhutnìlŭch pùd. Praha, Ústav vìdeckotechnickŭch informací pro zemìdìlství. (in Czech)
  31. Lipiec J., Hakansson I., Tarkiewicz Kossowski J. (1991): Soil physical properties and growth of spring barley related to the degree of compactness of two soils. Soil and Tillage Research, 82: 307-317. Go to original source...
  32. MGM (2022): Meteorology General Directorate, Official climate statistics. Available at https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx (accessed February 14, 2024).
  33. Misra R.K., Dexter A.R., Alston A.M. (1986): Penetration of soil aggregates of finite size: II. plant roots. Plant and Soil, 94: 59-85. Go to original source...
  34. Munsuz N. (1985): Toprak Mekaniği ve Teknolojisi. Ankara, Turkey, Ankara Üniversitesi Ziraat Fakültesi Yayinlari. (in Turkish)
  35. Murdock L., Gray T., Higgins F., Wells K. (1993): Soil compaction in Kentucky. Publication of the Cooperative Extension Service, University of Kentucky, College of Agriculture, 1-4.
  36. Negiş H., Şeker C., Gümüş İ. (2016): Dönemsel tarla trafiğinin şeker pancari tariminda toprak sikişmasina etkisi. Selçuk Tarim Bilimleri Dergisi, 3: 103-107. (in Turkish)
  37. Ngunjiri G.M.N., Siemens J.C. (1995): Wheel traffic effects on corn growth. Transactions of the ASAE, 38: 691-699. Go to original source...
  38. Oni K.C., Adeoti J.S. (1986): Tillage effects on differently compacted soil and on cotton yield in Nigeria. Soil and Tillage Research, 8: 89-100. Go to original source...
  39. Orzolek M.D. (1991): Establishment of vegetables in the field. HortTechnology, 1: 78-81. Go to original source...
  40. Rosolem C.A., Foloni J.S.S., Tiritan C.S. (2002): Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil and Tillage Research, 65: 109-115. Go to original source...
  41. Shah A.N., Tanveer M., Shahzad B., Yang G., Fahad S., Ali S., Bukhari M.A., Tung S.A., Hafeez A., Souliyanonh B. (2017): Soil compaction effects on soil health and cropproductivity: An overview. Environmental Science and Pollution Research, 24: 10056-10067. Go to original source... Go to PubMed...
  42. Soane B.D. (1970): The effect of traffic and implements on soil compaction. Journal and Proceedings of the Institution of Agricultural Engineers, 25: 115-126.
  43. Soane B.D., van Ouwerkerk C. (1994): Soil compaction problems in world agriculture. In: Chapter 1 - Soil Compaction in Crop Production. Volume 11. Amsterdam, Elsevier: 1-22. Go to original source...
  44. Şeker C., Işildar A.A. (2000): Tarla trafiğinin toprak profilindeki gözenekliliğe ve sikişmaya etkisi. Turkish Journal of Agriculture and Forestry, 24: 71-77. (in Turkish)
  45. Tapela M. (2001): Tillage effects on seedbed physical properties. [Ph.D. Thesis.] Iowa, Agricultural Engineering (Agricultural Power and Machinery) Iowa State University.
  46. TURKSTAT (2022): Turkish Statistical Institute. Crop production statistics. Available at https://biruni.tuik.gov.tr/medas/?kn=92&locale=en (accessed February 14, 2024).
  47. Unger P.W., Kaspar T.C. (1994): Soil compaction and rooth growth: A review. Agronomy Journal, 86: 759-766. Go to original source...
  48. Vepraskas M.J., Wagger M.G. (1989): Cone index values diagnostic of where subsoiling can increase corn root growth. Soil Science Society of America Journal, 53: 1499-1505. Go to original source...
  49. Vrindts E., Mouazen A.M., Maertens K., Maleki M.R., Ramon H., Baerdemaeker J.D. (2005): Management zones based on correlation between soi compaction, yield and crop data. Biosystems Engineering, 92: 419-428. Go to original source...
  50. Wang X., He J., Bai M., Liu L., Gao S., Chen K., Zhuang H. (2022): The impact of traffic-induced compaction on soil bulk density, soil stress distribution and key growth indicators of maize in North China Plain. Agriculture, 12: 1220. Go to original source...
  51. Wolfe D.W., Topoleski D.T., Gundersheim N.A., Ingall B.A. (1995): Growth and yield sensitivity of four vegetable crops to soil compaction. Journal of the American Society for Horticultural Science, 120: 956-963. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.