Hort. Sci. (Prague), X:X | DOI: 10.17221/69/2024-HORTSCI

Effect of leaf-to-fruit ratio on kernel quality formation of walnut treesOriginal Paper

Linhui Feng, Xian’an Yang, Shiwei Wang, Honglong Hao, Cuifang Zhang, Yicheng Gao, Yuqi Wang, Yusufu Alifu, Wenhui Zhao
Department of Forestry, College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, Xinjiang, P.R. China

The study focused on the relationship between leaf-to-fruit ratio (LFR) and walnut kernel quality in Juglans regia ‘Wen 185’. It was investigated how LFR influences single kernel weight, the contents and percentages of organic matter in kernels, the 13C distribution proportion (13CDP) in crude fat and protein, and the number and size of oil bodies within the kernels. A gradually decreasing LFR led to reduced single kernel weight, the contents of crude fat, crude protein, and soluble sugar dramatically (P < 0.05), with no significant changes in the percentages and (13CDP) of crude fat, crude protein, and soluble sugar (P > 0.05). Moreover, there were no significant differences in the number of oil bodies per unit area and the size of oil bodies in kernel cotyledons and endosperm storage cells among the different LFR (P > 0.05). We propose that the walnut kernel quality depends on the proportion of sugar converted into fat and protein in the kernels, that the changes in LFR affect the amount of sugar accumulated in kernels but not the proportion of sugar converted to fat and protein, and that the LFR, therefore, have no effect on the percentages of crude fat and crude protein in walnut kernels.

Keywords: embryo; oil accumulation; stable isotope;  submicroscopic structure

Received: April 10, 2024; Revised: March 25, 2025; Accepted: March 26, 2025; Prepublished online: August 18, 2025 

Download citation

References

  1. Andrianasolo F.N., Champolivier L., Debaeke P., Maury P. (2016): Source and sink indicators for determining nitrogen, plant density and genotype effects on oil and protein contents in sunflower achenes. Field Crops Research, 192: 33-41. Go to original source...
  2. Chen H., Pan C., Wang B., Hu Y., Xiao Z., He M. (2016): The relationship among nutrients' accumulation and dynamic changes of fatty acids in seed development of walnut. Journal of Agricultural University of Hebei, 39: 57-62. (in Chinese)
  3. Dong J., Shi D., Gao J., Li C., Liu J., Qi C., Yang W. (2009): Correlation between the quantity and the sum of areas of oil bodies and oil content in rapeseed (Brassica napus). Chinese Bulletin of Botany, 44: 79-85. (in Chinese)
  4. Gao F. (2021): Mechanism of yield and quality formation and regulation in different source-sink types of peanut. [Ph.D. Thesis.] Shandong, Shandong Agricultural University: 1-85. (in Chinese)
  5. Jasinski S., Chardon F., Nesi N., Lécureuil A., Guerche P. (2018): Improving seed oil and protein content in Brassicaceae: Some new genetic insights from Arabidopsis thaliana. Oilseeds and Fats Crops and Lipids, 25: D603. Go to original source...
  6. Jiang Z., Tan X., Yuan J., Ye S., Li Z. (2012): Content variation of main nutrients in leaves and fruits of Camellia oleifera. Journal of Central South University of Forestry and Technology, 32: 42-45. (in Chinese)
  7. Kambhampat S., Aznar-Moreno J.A., Bailey S.R., Arp J.J., Chu K.L., Bilyeu K.D., Durrett T.P., Allen D.K. (2021): Temporal changes in metabolism late in seed development affect biomass composition. Plant Physiology, 186: 874-890. Go to original source... Go to PubMed...
  8. Kennedy Y., Yokoi S., Sato T., Daimon H., Nishida I., Takahata Y. (2011): Genetic variation of storage compounds and seed weight in rapeseed (Brassica napus L.) germplasms. Breeding Science, 61: 311-315. Go to original source...
  9. Liu W. (2014): Effects of source sink regulation on carbon and nitrogen metabolism physiology and grain quality of two spike type high yield wheat. [Ph.D. Thesis.] Zhengzhou, Henan Agricultural University: 1-134. (in Chinese)
  10. Paddick M.E., Sprague H.B. (1939): Maize seed characters in relation to hybrid vigour. Journal of the American Society of Agronomy, 31: 743-750. Go to original source...
  11. Qin A., Aluko O.O., Liu Z., Yang J., Hu M., Guan L., Sun X. (2023): Improved cotton yield: Can we achieve this goal by regulating the coordination of source and sink? Frontiers in Plant Science, 14: 1136636. (in Chinese) Go to original source... Go to PubMed...
  12. Rivelli G.M., Calderini D.F., Abeledo L.G., Miralles D.J., Rondanini D.P. (2024): Yield and quality traits of wheat and rapeseed in response to source-sink ratio and heat stress in post-flowering. European Journal of Agronomy, 152: 127028. Go to original source...
  13. Shekoofa A., Emam Y., Pessarakli M. (2013): Source-sink manipulation effects on maize kernel quality. Journal of Plant Nutrition, 36: 1401-1411. Go to original source...
  14. Slfer G.A., Foulkes M.J., Reynolds M.P., Murchie E.H., Carmo-Silva E., Flavell R., Gwyn J., Sawkins M., Griffiths S. (2023): A 'wiring diagram' for sink strength traits impacting wheat yield potential. Journal of Experimental Botany, 74: 40-71. Go to original source... Go to PubMed...
  15. Wang Y., Pang Y., Chen K., Zhai L., Shen C., Wang S., Xu J. (2020a): Genetic bases of source-, sink-, and yield-related traits revealed by genome-wide association study in Xian rice. The Crop Journal, 8: 119-131. Go to original source...
  16. Wang X., Zheng X., Cao Y., Yu H., Wu T. (2020b): Effects of source alteration on material production and grain nutrition components accumulation of transplanted maize. Journal of Maize Sciences, 28: 111-116. (in Chinese)
  17. Wei H., Meng T., Li X., Dai Q., Zhang H., Yin X. (2018): Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Research, 215: 23-38. Go to original source...
  18. Xie H., Huang Y., Xue X., Xu C., Liu L. (2008): Growth and development of the Carya cathayensis nut. Journal of Zhejiang Forestry College, 25: 527-531. (in Chinese)
  19. Yin D., Song J., Zhang X., Li H., Wang X., Cui D. (2013): Microstructure of peanut seeds at different developmental stages. Journal of Nuclear Agricultural Sciences, 27: 344-349. (in Chinese)
  20. Yuan J., Shi B., Wu Z., Tan X. (2015): Response of fruit quality and leaf photosynthesis to different sink-source relationships in Camellia oleifera. Plant Physiology Journal, 51: 1287-1292. (in Chinese)
  21. Zhang C., Pan C., Chen H. (2018): Effects of leaf-to-fruit ratio on chlorophyll fluorescence parameters of walnut (Juglans regia L.) leaves. Photosynthetica, 56: 1429-1436. (in Chinese) Go to original source...
  22. Zhang Y., Li W., Han Z., Zhang K., Liu J., Henke M. (2024): Three-dimensional dynamic growth and yield simulation of daylily plants. Smart Agriculture, 6: 140-153. (in Chinese) Go to original source...
  23. Zhang Y., Wang M., Zhao L., Zhang D., Jia Y., Wang J., Li K., Chen L. (2022): Comparison of nutrient composition changes of different soybean varieties during germination. Chinese Journal of Oil Crop Sciences, 44: 1368-1374. (in Chinese)
  24. Zhang Z., Gao Y., Wang W., Zhang Y., Fang Z. (2001): Changes of main nutrients during the fruit ripening of walnut. Acta Horticulturae Sinica, 28: 509-511. (in Chinese)
  25. Zhao N., Zhang Y., Wang J., Liu X., Zhao C., Guo H. (2015): Seed development, lipid accumulation and its relationship with carbohydrates and protein in Xanthoceras sorbifolia Bunge. Bulletin of Botanical Research, 35: 133-140. (in Chinese)
  26. Zhu Z., Jiang C., Shi Y., Wu W., Chen N. (2015): Response of yield and leaf photosynthesis to sink-source ratio altering demand in olive. Scientia Agricultura Sinica, 48: 546-554. (in Chinese)

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.