Hort. Sci. (Prague), X:X | DOI: 10.17221/32/2024-HORTSCI

Temporal variations in flowering of ‘Honeycrisp’ apple grafted on eight different rootstocksOriginal Paper

Oscar Cruz-Alvarez ORCID...1, José de Jesus Ornelas-Paz ORCID...2, Diana Laura Araujo-Pallares1, María Nohemí Frias-Moreno ORCID...1, Graciela Dolores Ávila-Quezada ORCID...1, Damaris Leopoldina Ojeda-Barrios ORCID...1, Juan Luis acobo-Cuellar ORCID...1
1 Faculty of Agrotechnological Sciences, Autonomous University of Chihuahua, Chihuahua, México
2 Center for Research in Food and Development A.C., Chihuahua, México

Malus domestica is one of the world’s most important deciduous fruit trees. Over a four-year period (2017–2020), temporal variations in flowering were evaluated in ‘Honeycrisp’ apple trees on eight rootstocks (G.30, G.969, G.202, G.41, G.11, M.9T337, M.26 EMLA and V.6) planted in 2014 in Chihuahua, México. Among the variables evaluated were the probability of late-spring frost, winter chill units, growing degree days, flowering period, foliar nutrient concentrations, trunk cross-sectional area, number and weight of fruit per tree, and production efficiency. Significantly different chill unit accumulations occurred over the four years, with values falling between 974 and 1 415, where for the latter value, the start of flower opening was earlier, but there was a higher risk of damage by temperatures ≤ –2 °C. There was no effect of rootstock on the time of onset and end of flowering. The most productive combinations were ‘Honeycrisp’ on G.969, G.11 and V.6 with yield estimates of 35 300, 34 200 and 33 600 kg/ha, respectively. The commercial production of ‘Honeycrisp’ apple trees requires the evaluation of their agronomic performance with different rootstocks. Flowering is particularly important since this phenological stage is so closely linked to productivity and is strongly affected by variations in winter temperatures.

Keywords: Malus sylvestris; chill units; climate change; Weibull model; trunk cross-sectional area; foliar nutrients

Received: February 17, 2024; Revised: October 31, 2024; Accepted: January 9, 2025; Prepublished online: August 25, 2025 

Download citation

References

  1. Ahmadi H., Baaghideh M. (2018): Impacts of climate change on apple tree cultivation areas in Iran. Climatic Change, 153: 91-103. Go to original source...
  2. Al Shoffe Y., Nock J.F., Baugher T.A., Marini R.P., Watkins C.B. (2020): Bitter pit and soft scald development during storage of unconditioned and conditioned 'Honeycrisp' apples in relation to mineral contents and harvest indices. Postharvest Biology and Technology, 160: 111044. Go to original source...
  3. Anderson J.L., Richardson E.A., Kesner C.D. (1986): Validation of chill unit and flower bud phenology models for 'Montmorency' sour cherry. Acta Horticulturae (ISHS), 184: 71-78. Go to original source...
  4. Benmoussa H., Luedeling E., Ghrab M., Ben Mimoun M. (2020): Severe winter chill decline impacts Tunisian fruit and nut orchards. Climatic Change, 162: 1249-1267. Go to original source...
  5. Campoy J.A., Darbyshire, R., Dirlewanger, E., Quero-García J., Wenden B. (2019): Yield potential definition of the chilling requirement reveals likely underestimation of the risk of climate change on winter chill accumulation. International Journal of Biometeorology, 63: 183-192. Go to original source... Go to PubMed...
  6. Cline J.A., Autio W., Clements J., Cowgill W., Crassweller R., Einhorn T., Fallahi E., Francescatto P., Hoover E., Lang G., Lordan J., Moran R., Muehlbauer M., Musacchi S., Stasiak M., Parra Quezada R., Robinson T., Serra S., Sherif S., Wiepz R., Zandstra J. (2021): Early performance of 'Honeycrisp' apple trees on several size-controlling rootstocks in the 2014 NC-140 rootstock trial. Journal of the American Pomological Society, 75: 189-202.
  7. Crassweller R.M., Marini R.P., Baugher T.A., Smith D.E. (2019): Five-year nutritional study of apples in commercial high density orchards. Acta Horticulturae (ISHS), 1253: 163-168. Go to original source...
  8. Cook N.C., Calitz F.J., Allderman L.A., Steyn W.J., Louw E.D. (2017): Diverse patterns in dormancy progression of apple buds under variable winter conditions. Scientia Horticulturae, 226: 307-315. Go to original source...
  9. DeLong C.N., Yoder K., Combs L., Leon R.V., Peck G. (2016): Apple pollen tube growth rates are regulated by parentage and environment. Journal of the American Society for Horticultural Science, 141: 548-554. Go to original source...
  10. Drepper B., Gobin A., Van Orshoven, J. (2022): Spatio-temporal assessment of frost risks during the flowering of pear trees in Belgium for 1971-2068. Agricultural and Forest Meteorology, 315: 108822. Go to original source...
  11. El Yaacoubi A., Malagi G., Oukabli A., Hafidi M., Legave J.M. (2014): Global warming impact on floral phenology of fruit trees species in Mediterranean region. Scientia Horticulturae, 180: 243-253. Go to original source...
  12. Fazio G., Lordan J., Francescatto P., Cheng L., Wallis A., Grusak M.A., Robinson T.L. (2016): 'Honeycrisp' apple fruit nutrient concentration affected by apple rootstocks. Acta Horticulturae (ISHS), 1228: 223-228. Go to original source...
  13. Fazio G., Lordan J., Grusak M.A., Francescatto P., Robinson T.L. (2020): I. Mineral nutrient profiles and relationships of 'Honeycrisp' grown on a genetically diverse set of rootstocks under Western New York climatic conditions. Scientia Horticulturae, 266: 108477. Go to original source...
  14. Fernandez E., Mojahid H., Fadón E., Rodrigo J., Ruiz D., Egea J.A., Ben Mimoun M., Kodad O., El Yaacoubi A., Ghrab M., Egea J., Benmoussa H., Borgini N., Elloumi O., Luedeling E. (2022): Climate change impacts on winter chill in Mediterranean temperate fruit orchards. Regional Environmental Change, 23: 7. Go to original source...
  15. Ghrab M., Mimoun M.B., Masmoudi M.M., Mechlia N.B. (2014): Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees. Scientia Horticulturae, 178: 87-94. Go to original source...
  16. Hauagge R., Cummins J.N. (1991): Phenotypic variation of length of bud dormancy in apple cultivars and related Malus species. Journal of the American Society for Horticultural Science, 116: 100-106. Go to original source...
  17. Islam M.T., Liu J., Das P.R., Singh A., Sherif S.M. (2022): Rootstock effects on bitter pit incidence in 'Honeycrisp' apples are associated with changes in fruit's cell wall chemical properties. Frontiers in Plant Science, 13: 1034664. Go to original source... Go to PubMed...
  18. Li M., Guo J., He J., Xu C., Li J., Mi C., Tao S. (2020): Possible impact of climate change on apple yield in Northwest China. Theoretical and Applied Climatology, 139: 191-203. Go to original source...
  19. Marini R.P., Baugher T.A., Muehlbauer M., Sherif S., Crassweller R., Schupp J.R. (2020): Verification and modification of a model to predict bitter pit for 'Honeycrisp' apples. HortScience, 55: 1882-1887. Go to original source...
  20. Mora-Aguilera G., Nieto-Angel D., Téliz-Ortiz D., Campbell-Lee C. (1993): Development of a prediction model for papaya ringspot in Veracruz, Mexico. Plant Disease, 77: 1205-1211. Go to original source...
  21. Nimbolkar P.K., Awachare C., Reddy Y.T.N., Chander S., Hussain F. (2016): Role of rootstocks in fruit production - A review. Journal of Agricultural Engineering and Food Technology, 3: 183-188.
  22. Ontiveros-Capurata R.E., Juarez-Lopez P., Mendoza-Tafolla R.O., Alia-Tejacal I., Villegas-Torres O.G., Guillen-Sanchez D., Cartmill A.D. (2022): Relationship between chlorophyll and nitrogen concentration, and fresh matter production in basil 'Nufar' (Ocimum basilicum) with three handheld chlorophyll meter readings: SPAD, atLEAF and MC-100. Revista Chapingo Serie Horticultura, 28: 189-202. Go to original source...
  23. Ortiz-Solorio C.A. (1987): Elementos de agrometeorología cuantitativa: Con aplicaciones en la República Mexicana. 3rd Ed. Chapingo, México, Departamento de Suelos, Universidad Autónoma Chapingo. (in Spanish)
  24. Pertille R.H., Citadin I., de Oliveira L.D.S., de Camargo Broch J., Kvitschal M.V., Araujo L. (2022): The influence of temperature on the phenology of apple trees grown in mild winter regions of Brazil, based on long-term records. Scientia Horticulturae, 305: 111354. Go to original source...
  25. Petri J.L., Leite G.B. (2003): Consequences of insufficient winter chilling on apple tree bud-break. Acta Horticulturae (ISHS), 662: 53-60. Go to original source...
  26. Petri J.L., Leite G.B., Couto M., Gabardo G.C., Haverroth F.J. (2014): Chemical induction of budbreak: New generation products to replace hydrogen cyanamide. Acta Horticulturae (ISHS), 1042: 159-166. Go to original source...
  27. Pfleiderer P., Menke I., Schleussner C.F. (2019): Increasing risks of apple tree frost damage under climate change. Climatic Change, 157: 515-525. Go to original source...
  28. Kishore D.K., Pramanick K.K., Singh A.K., Singh R., Verma J.K. (2015): Chilling unit accumulation at Shimla, Himachal Pradesh, India - A predominantly apple (Malus × domestica Borkh) growing region. International Journal of Fruit Science, 15: 117-128. Go to original source...
  29. Ramírez-Legarreta M.R., Ruiz-Corral J.A., Medina-García G., Jacobo-Cuellar J.L., Parra-Quezada R.A., Avila-Marioni M.R., Amado-Alvarez J.P. (2011): Perspectives on the apple production system in Chihuahua facing climate change. Revista Mexicana de Ciencias Agrícolas, 2: 265-279.
  30. Richardson E.A., Seeley S.D., Walker D.R. (1974): A model for estimating the completion of rest for 'Redhaven' and 'Elberta' peach trees. HortScience, 9: 331-332. Go to original source...
  31. Ru X., Zhou J., Gong K., He Z., Dai Z., Li M., Feng X., Yu Q., Feng H., He J. (2023): Climate warming may accelerate apple phenology but lead to divergent dynamics in late-spring frost and poor pollination risks in main apple production regions of China. European Journal of Agronomy, 150: 126945. Go to original source...
  32. Serra S., Leisso R., Giordani L., Kalcsits L., Musacchi S. (2020): Crop load influences fruit quality, nutritional balance, and return bloom in 'Honeycrisp' apple. HortScience, 51: 236-244. Go to original source...
  33. Sherif S.M. (2022): Rootstock effects on tree growth and yield of 'Honeycrisp' apple under Virginia state climatic conditions. Virginia Cooperative Extension, Virginia State University, SPES-398NP.
  34. SIAP (Sistema de Información Agrícola y Pecuario) (2023): Anuario Estadístico de la Producción Agrícola. Secretaria de Agricultura y Desarrollo Rural. Available at https://nube.agricultura.gob.mx/cierre_agricola/ (accessed Oct 26, 2024).
  35. Singh N., Sharma D.P., Chand H. (2016): Impact of climate change on apple production in India: A review. Current World Environment, 11: 251. Go to original source...
  36. Valverdi N.A., Cheng L., Kalcsits L. (2019): Apple scion and rootstock contribute to nutrient uptake and partitioning under different belowground environments. Agronomy, 9: 415. Go to original source...
  37. Valverdi N.A., Kalcsits L. (2021): Rootstock affects scion nutrition and fruit quality during establishment and early production of 'Honeycrisp' apple. HortScience, 56: 261-269 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.