Hort. Sci. (Prague), 2025, 52(2):173-181 | DOI: 10.17221/126/2023-HORTSCI

Effect of Trichoderma harzianum against Fusarium oxysporum in resistant and susceptible tomato cultivarsOriginal Paper

Patcharaporn Suwor1, Manthana Mueangkhong1, Praphat Kawicha2,3, Thanwanit Thanyasiriwat2,3, Suchila Techawongstien4, Sanjeet Kumar5, Wen-Shi Tsai6, Somsak Kramchote1
1 School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
2 Plant Genome and Disease Research Unit, Department of Agriculture and Resources, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
3 Center of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and Research Development Office, Office of Higher Education Commission, Ministry of Education, Thailand
4 Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
5 Plant Geneticist and Breeder (Independent), Gopal Kunj, Varanasi, India
6 Department of Plant Medicine, National Chiayi University, Chiayi City, Taiwan

Fusarium wilt disease presents a substantial challenge to tomato production, especially in an open field environment. The peroxidase (POD) activity and total phenolic compounds (TPCs) play a crucial role in measuring the antioxidant capacity of plants. Understanding the variations in the POD and TPC levels during disease-induced stress becomes important for effectively managing Fusarium wilt and enhancing tomato production. This study investigates the impacts of Trichoderma harzianum inoculation through the root drip method on five tomato cultivars. It compares these cultivars to their non-treated counterparts when they are subjected to infection by Fusarium oxysporum f. sp. lycopersici (Fol). The results showed that the level of resistance to Fol is based on the specific tomato cultivar. Notably, ‘MT26’ exhibited the lowest disease severity index (DSI), indicating a strong response, whereas ‘CLN3682F’ showed notable susceptibility. Regarding the POD and TPC activity, its exhibition differed in compatibility with the response of each tomato cultivar to Fusarium wilt disease. The resistant cultivars increased the POD activity after the Trichoderma induction before the Fol inoculation, and this activity was further boosted when exposed to disease conditions. Consequently, enhancing the POD and TPC levels during the initial stages could potentially serve as a systemic defence mechanism of tomatoes against the Fusarium wilt disease.

Keywords: breeding for resistance; fungi; protection; tomato resistant source

Received: October 19, 2023; Revised: November 27, 2024; Accepted: January 9, 2025; Prepublished online: June 20, 2025; Published: June 26, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Suwor P, Mueangkhong M, Kawicha P, Thanyasiriwat T, Techawongstien S, Kumar S, et al.. Effect of Trichoderma harzianum against Fusarium oxysporum in resistant and susceptible tomato cultivars. Hort. Sci. (Prague). 2025;52(2):173-181. doi: 10.17221/126/2023-HORTSCI.
Download citation

References

  1. Akrami M., Yousef Z. (2015): Biological control of Fusarium wilt of tomato (Solanum lycopersicum) by Trichoderma spp. as antagonist fungi. Biological Forum, 7: 887-892.
  2. Baetz U., Martinoia E. (2014): Root exudates: The hidden part of plant defense. Trends in Plant Science, 19: 90-98. Go to original source... Go to PubMed...
  3. Chitwood-Brown J., Vallad G.E., Lee T.G., Hutton S.F. (2021): Breeding for resistance to Fusarium wilt of tomato: A review. Genes, 12: 1673. Go to original source... Go to PubMed...
  4. Colla G., Rouphael Y., Mattia E.D., El-Nakhel C., Cardarelli M. (2015): Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture, 95: 1706-1715. Go to original source... Go to PubMed...
  5. Dadáková K., Heinrichová T., Lochman J., Kašparovský T. (2020): Production of defense phenolics in tomato leaves of different age. Molecules, 25: 4952. Go to original source... Go to PubMed...
  6. Fiorentino N., Ventorino V., Woo S.L., Pepe O., De Rosa A., Gioia L., Romano I., Lombardi N., Napolitano M., Colla G., Rouphael Y. (2018): Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Frontiers in Plant Science, 9: 743. Go to original source... Go to PubMed...
  7. Galarza L., Akagi Y., Takao K., Kim C.S., Maekawa N., Itai A., Peralta E., Santos E., Kodama M. (2015): Characterization of Trichoderma species isolated in Ecuador and their antagonistic activities against phytopathogenic fungi from Ecuador and Japan. Journal General Plant Pathology, 81: 201-210. Go to original source...
  8. Gordon T.R. (2017): Fusarium oxysporum and the Fusarium wilt syndrome. Annual Review of Phytopathology, 55: 23-39. Go to original source... Go to PubMed...
  9. Harman G.E. (2000): Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84: 377-393. Go to original source... Go to PubMed...
  10. Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. (2004): Trichoderma species - Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2: 43-56. Go to original source... Go to PubMed...
  11. Hibar K., Daami-Remadi M., El-Mahjoub M. (2007): Induction of resistance in tomato plants against Fusarium oxysporum f. sp, radicis-lycopersici by Trichoderma spp. Tunisian Journal of Plant Protection, 2: 47-58.
  12. Houssien A.A., Ahmed S.M., Ismail A.A. (2010): Activation of tomato plant defense response against Fusarium wilt disease using Trichoderma harzianum and salicylic acid under greenhouse conditions. Research Journal of Agriculture and Biological Sciences, 6: 328-338.
  13. Inami K., Kashiwa T., Kawabe M. Onokubo-Okabe A., Ishikawa N., Pérez E.R., Hozumi T., Caballero L.A., de Baldarrago F.C., Roco M.J., Madadi K.A., Peever T.L., Taraoka T., Kodama M., Arie T. (2014): The tomato wilt fungus Fusarium oxysporum f. sp. lycopersici shares common ancestors with nonpathogenic F. oxysporum isolated from wild tomatoes in the Peruvian Andes. Microbes and Environments, 29: 200-210. Go to original source... Go to PubMed...
  14. Kareem T.K., Ugoji O.E., Aboaba O.O. (2016): Biocontrol of Fusarium wilt of cucumber with Trichoderma longibrachiatum NGJ167 (Rifai). British Microbiology Research Journal, 16: 1-11. Go to original source...
  15. Kauffmann S., Legrand M., Geoffroy P., Fritig B. (1987): Biological function of 'pathogenesis-related' proteins: Four PR proteins of tobacco have 1,3-β-glucanase activity. The EMBO Journal, 6: 3209-3212. Go to original source... Go to PubMed...
  16. Lattanzio V., Lattanzio V.M.T., Cardinali A. (2006): Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research, 37: 23-67.
  17. Malik C.P., Singh M.B. (1980): Plant Enzymology and Histo-enzymology: A Text Manual. 1st Ed. New Delhi, Kalyani Publishers.
  18. Métrauxs J.P. (2001): Systemic acquired resistance and salicylic acid: Current state of knowledge. European Journal of Plant Pathology, 107: 13-18. Go to original source...
  19. Morán-Diez M.E., Tranque E., Bettiol W., Monte E., Hermosa R. (2020): Differential response of tomato plants to the application of three Trichoderma species when evaluating the control of Pseudomonas syringae populations. Plants, 9: 626. Go to original source... Go to PubMed...
  20. Naranjo S.E., Ellsworth P.C., Frisvold G.B. (2015): Economic value of biological control in integrated pest management of managed plant systems. Annual Review of Entomology, 60: 621-645. Go to original source... Go to PubMed...
  21. Ojha S., Chatterjee N.C. (2012): Induction of resistance in tomato plants against Fusarium oxysporum f. sp. lycopersici mediated through salicylic acid and Trichoderma harzianum. Journal of Plant Protection Research, 52: 220-225. Go to original source...
  22. Olivain C., Alabouvette C. (1999): Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f. sp. lycopersici in comparison with a non-pathogenic strain. New Phytologist, 141: 497-510. Go to original source...
  23. Ozbay N., Newman S.E. (2004): Fusarium crown and root rot of tomato and control methods. Plant Pathology Journal, 3: 9-18. Go to original source...
  24. Pascale A., Vinale F., Manganiello G., Nigro M., Lanzuise S., Ruocco M., Marra R., Lombardi N., Woo S.L., Lorito M. (2017): Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 92: 176-181. Go to original source...
  25. Pedley K.F., Martin G.B. (2003): Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annual Review of Phytopathology, 41: 215-243. Go to original source... Go to PubMed...
  26. Piao X.-M., Jang E.-K., Chung J.-W., Lee G.-A., Lee H.-S., Sung J.-S., Jeon Y.-A., Lee J.-R., Kim Y.-G., Lee S.-Y. (2013): Variation in antioxidant activity and polyphenol content in tomato stems and leaves. Plant Breeding and Biotechnology, 1: 366-373. Go to original source...
  27. Silva-Beltrán N.P., Ruiz-Cruz S., Cira-Chávez L.A., Estrada-Alvarado M.I., Ornelas-Paz J.D.J., López-Mata M.A., Del-Toro-Sánchez C.L., Ayala-Zavala J.F., Márquez-Ríos E. (2015): Total phenolic, flavonoid, tomatine, and tomatidine contents and antioxidant and antimicrobial activities of extracts of tomato plant. International Journal of Analytical Chemistry, 2015: 284071. Go to original source... Go to PubMed...
  28. Srinivas C., Devi D.N., Murthy K.N., Mohan C.D., Lakshmeesha T.R., Singh B.P., Kalagatur N.K., Niranjana S.R., Hashem A., Alqarawi A.A., Tabassum B., Abd_Allah E.F., Nayaka S.C., Srivastava R.K. (2019): Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity - A review. Saudi Journal of Biological Science, 26: 1315-1324. Go to original source... Go to PubMed...
  29. Stewart A., Hill R. (2014): Applications of Trichoderma in plant growth promotion. Chapter 31. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G. (eds): Biotechnology and Biology of Trichoderma. Amsterdam, Elsevier: 415-428. Go to original source...
  30. Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. (2008): Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 40: 1-10. Go to original source...
  31. Woo S.L., Ruocco M., Vinale F., Nigro M., Marra R., Lombardi N., Pascale A., Lanzuise S., Manganiello G., Lorito M. (2014): Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, 8: 71-126. Go to original source...
  32. Yedidia I., Benhamou N., Chet I. (1999): Induction of defense responses in cucumber plants (Cucumis sativa L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology, 65: 1061-1070. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.