Hort. Sci. (Prague), 2025, 52(2):91-102 | DOI: 10.17221/41/2024-HORTSCI

Sequential and combined spray of herbicides to tomato field on weed reduction, fruit parameters and carryover residuesOriginal Paper

Yerra Pavani ORCID...1, Ponnusamy Janaki ORCID...1, Palanisamy Murali Arthanari ORCID...2, Ramasamy Jagadeeswaran ORCID...3, Arjunan Sankari ORCID...4, Alaguthevar Ramalakshmi ORCID...5, Chandrasekaran Bharathi2
1 Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, India
2 Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore, India
3 Department of Remote Sensing and GIS, Tamil Nadu Agricultural University, Coimbatore, India
4 Department of Vegetable Science, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
5 Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India

Tomatoes are in great demand worldwide and consumed due to their nutritional and sensory qualities. Weed infestation poses a great challenge in tomato production, prompting growers to employ two to three herbicides in combinations and sequences for comprehensive control. Consequently, this study was undertaken to investigate the effects of glyphosate, pendimethalin, and metribuzin when applied individually or in sequential combinations in tomato fields. The herbicides significantly reduced the weed density and dry biomass and enhanced the weed control efficiency (WCE) compared to control. A tank mix spray of pendimethalin and metribuzin following glyphosate gave significantly higher WCE (80–91%) and fruit yield (88.47 t/ha). The tomato quality parameters were unaffected by the herbicides. The terminal residues in fruits were found below the safe limit of 0.1 mg/kg for glyphosate and 0.01 mg/kg for pendimethalin and metribuzin. Moreover, there was no evidence of residual carryover toxicity from the applied herbicides, as confirmed by the plant bioassay and instrumental techniques. However, continuous spraying of herbicides repeatedly in succession and in combination necessitates long-term monitoring to assess the potential development of herbicide-resistant weeds, the bio-magnification of residues in soil, their transfer to tomato fruits and the impact on the food chain.

Keywords: fruit quality; herbicides persistence; phytotoxicity; tank mix; weed control

Received: March 10, 2024; Revised: May 16, 2024; Accepted: July 9, 2024; Prepublished online: April 22, 2025; Published: June 26, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Pavani Y, Janaki P, Murali Arthanari P, Jagadeeswaran R, Sankari A, Ramalakshmi A, Bharathi C. Sequential and combined spray of herbicides to tomato field on weed reduction, fruit parameters and carryover residues. Hort. Sci. (Prague). 2025;52(2):91-102. doi: 10.17221/41/2024-HORTSCI.
Download citation

References

  1. Abbas T., Nadeem M.A., Tanveer A., Ahmad A. (2016): Identifying optimum herbicide mixtures to manage and avoid fenoxaprop-p-ethyl resistant phalaris minor in wheat. Planta Daninha, 34: 787-794. Go to original source...
  2. Alcántara-de la Cruz R., Domínguez-Martínez P.A., da Silveira H.M., Cruz-Hipólito H.E., Palma-Bautista C., Vázquez-García J.G., De Prado R. (2019): Management of glyphosate-resistant weeds in Mexican citrus groves: Chemical alternatives and economic viability. Plants, 8: 325. Go to original source... Go to PubMed...
  3. Alister C.A., Gomez P.A., Rojas S., Kogan M. (2009): Pendimethalin and oxyfluorfen degradation under two irrigation conditions over four years application. Journal of Environmental Science and Health, Part B, 44: 337-343. Go to original source... Go to PubMed...
  4. Bhargavi G., Sundari A., Kalaisudarson S., Usharani G. (2024): Effect of pre emergence herbicides on weed dynamics and production potential of rice (Oryza sativa) under SRI. Journal of Applied Biology and Biotechnology, 12: 234-239. Go to original source...
  5. Brindhavani P.M., Janaki P., Gomadhi G., Ramesh T., Ejilane J. (2020): Influence of arbuscular mycorrhizal fungi on glyphosate dissipation rate in okra cultivated sodic soil of Tamil Nadu. Journal of Environmental Biology, 41: 1542-1549. Go to original source...
  6. Dey P., Pandit P. (2020): Relevance of data transformation techniques in weed science. Journal of Research in Weed Science, 3: 81-89.
  7. FAO (2021): Pesticide Detail - Pendimethalin. Available at https://www.fao.org/fao-who-codexalimentarius/codex texts / dbs / pestres /pesticide-detail/en/?p_id=292
  8. (accessed Mar 25, 2024).
  9. FAOSTAT (2021): Production: Crops and livestock products. Available at https://www.fao.org/faostat/en/#data/QCL (accessed June 26, 2023).
  10. FSSAI (2020): Food Safety and Standards (Contaminants, toxins and residues) Regulations, 2011. Available at https://www.fssai.gov.in/upload/uploadfiles/files/Compendium_Contaminants_Regulations_20_08_2020.pdf (accessed July 22, 2024).
  11. Janaki P., Meena S., Shanmugasundaram R., Chinnusamy C. (2019): Dissipation and impact of herbicides on soil properties in Tamil Nadu. In: Sondhia S., Choudhury P., Sharma A. (eds): Herbicide Residue Research in India. Singapore, Springer Nature: 193-237. Go to original source...
  12. Janaki P., Sundaram K.M., Chinnusamy C., Sakthivel N. (2015): Determination of residues of metribuzin in soil and sugarcane by QuEChERS. Asian Journal of Chemistry, 27: 3692-3696. Go to original source...
  13. Janaki P., Nithya C., Kalaiyarasi D., Sakthivel N., Prabhakaram N.K., Chinnusamy C. (2016): Residue of bensulfuron methyl in soil and rice following its pre- and post-emergence application. Plant, Soil and Environment, 62: 428-434. Go to original source...
  14. Kanissery R., Gairhe B., Kadyampakeni D., Batuman O., Alferez F. (2019): Glyphosate: Its environmental persistence and impact on crop health and nutrition. Plants, 8: 499. Go to original source... Go to PubMed...
  15. Kaur N., Bhullar M.S. (2015): Harvest time residues of pendimethalin and oxyfluorfen in vegetables and soil in sugarcane-based intercropping systems. Environmental Monitoring and Assessment, 187: 221. Go to original source... Go to PubMed...
  16. Khoury R., Geahchan A., Coste C.M., Cooper J.F., Bobe A. (2003): Retention and degradation of metribuzin in sandy loam and clay soils of Lebanon. Weed Research, 43: 252-259. Go to original source...
  17. Kočárek M., Artikov H., Voříšek K., Borůvka L. (2016): Pendimethalin degradation in soil and its interaction with soil microorganisms. Soil and Water Research, 11: 213-219. Go to original source...
  18. Lee Y.-D., Kim H.-J., Chung J.-B., Jeong B.-R. (2000): Loss of pendimethalin in runoff and leaching from turfgrass land under simulated rainfall. Journal of Agricultural and Food Chemistry, 48: 5376-5382. Go to original source... Go to PubMed...
  19. Majumdar K., Singh N. (2007): Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere, 66: 630-637. Go to original source... Go to PubMed...
  20. Mani V.S., Malla M.L., Gautam K.C., Bhagwandas (1973): Weed-killing chemicals in potato cultivation. Indian Farming, 23: 17-18.
  21. Mennan H., Jabran K., Zandstra B.H., Pala F. (2020): Non-chemical weed management in vegetables by using cover crops: A review. Agronomy, 10: 257. Go to original source...
  22. Mohamed S.F., Ali Z.E. (1984): Effect of in-row plant spacing and levels of nitrogen fertilizer on yield and quality of direct-seeded tomatoes. Acta Horticulturae (ISHS), 218: 207-212. Go to original source...
  23. Okada E., Costa J.L., Bedmar F. (2019): Glyphosate dissipation in different soils under no-till and conventional tillage. Pedosphere, 29: 773-783. Go to original source...
  24. Olayinka B.U., Esan O.O., Anwo I.O., Etejere E.O. (2017): Comparative growth analysis and fruit quality of two varieties of tomato under hand weeding and pendimethalin herbicide. Journal of Agricultural Sciences, 12: 149-161. Go to original source...
  25. Peek D.C., Appleby A.P. (1989): Effect of pH on phytotoxicity of metribuzin and ethyl-metribuzin. Weed Technology, 3: 636-639. Go to original source...
  26. Rajasree V., Sathiyamurthy V.A., Shanmugasundaram T., Arumugam T. (2017): Integrated weed management on growth, yield and economics in okra [Abelmoschus esculentus (L.) Moench] under kharif. Madras Agricultural Journal, 104: 81-84.
  27. Ramesh K.R., Rao A.N., Chauhan B.S. (2017): Role of crop competition in managing weeds in rice, wheat, and maize in India: A review. Crop Protection, 95: 14-21. Go to original source...
  28. Ranganna S. (1986): Handbook of Analysis and Quality Control for Fruit and Vegetable Products. New Delhi, Tata McGraw-Hill Publishing Co. Ltd.
  29. Rao A.N., Chauhan B.S. (2015): Weeds and weed management in India - A Review. In: Weed Science in the Asian Pacific Region. Hyderabad, Indian Society of Weed Science: 87-118.
  30. Reddy V.M., Umajyothi K.R., Syam Sundar P., Sasikala K. (2018): Influence of pre and post emergence herbicides on fruit quality and yield parameters in tomato cv. Arka Vikas. International Journal of Current Microbiology and Applied Sciences, 7: 1543-1548. Go to original source...
  31. Saritha J.D., Ramprakash T., Rao P.C., Madhavi M. (2017): Persistence of metribuzin in tomato growing soils and tomato fruits. Nature Environment and Pollution Technology, 16: 505-508.
  32. Sgherri C., Kadlecová Z., Pardossi A., Navari-Izzo F., Izzo R. (2008): Irrigation with diluted seawater improves the nutritional value of cherry tomatoes. Journal of Agricultural and Food Chemistry, 56: 3391-3397. Go to original source... Go to PubMed...
  33. Singh V., Jat M.L., Ganie A.Z., Chauhan B.S., Gupta R.K. (2016): Herbicide options for effective weed management in dry direct-seeded rice under scented rice-wheat rotation of western Indo-Gangetic Plains. Crop Protection, 81: 168-176. Go to original source... Go to PubMed...
  34. Siueia M., de Souza Silva M.L., Trevizam A.R., Faquin V., Ferreira da Silva D. (2020): Postharvest quality of tomato as affected by nitrogen and sulfur interaction. Acta Agronómica, 69: 130-135. Go to original source...
  35. Tandon S. (2016): Dissipation of pendimethalin in soybean crop under field conditions. Bulletin of Environmental Contamination and Toxicology, 96: 694-698. Go to original source... Go to PubMed...
  36. Tiwari A., Tiwari A., Singh N.B., Kumar A. (2017): Effect of Integrated nutrient management (INM) on soil properties, yield and economics of rice (Oryza sativa L.). Research in Environment and Life Sciences, 10: 640-644.
  37. USEPA (1997): R.E.D. Facts - Pendimethalin. Available at https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-108501_1-Jun-97.pdf (accessed June 18, 2023).
  38. Wauchope R.D., Buttler T.M., Hornsby A.G., Augustijn-Beckers P.W.M., Burt J.P. (1992): The SCS/ARS/CES pesticide properties database for environmental decision-making. In: Ware G.W. (ed.): Reviews of Environmental Contamination and Toxicology. New York, Springer. Go to original source...
  39. Yerra P., Janaki P., Ramalakshmi A., Jagadeeswaran R., Sankari A., Arthanari P.M. (2023): Herbicides and nutrients interaction on earthworm activity in tomato cultivated soil and toxicity appraisal. Plant, Soil and Environment, 69: 429-436. Go to original source...
  40. Yin Y., Zheng Z., Jiang Z. (2019). Effects of lycopene on metabolism of glycolipid in type 2 diabetic rats. Biomedicine & Pharmacotherapy, 109: 2070-2077. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.