Hort. Sci. (Prague), 2025, 52(1):67-80 | DOI: 10.17221/161/2023-HORTSCI
Identification and validation of stem rot disease resistance genes in passion fruit (Passiflora edulis)Original Paper
- 1 Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, P.R. China
- 2 Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, P.R. China
- 3 Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Academy of Agricultural Sciences, Nanning, P.R. China
Stem rot disease poses a significant challenge in passion fruit production, necessitating the identification of resistant genes for the development of stem rot resistant varieties. In this study, we conducted artificial inoculation of Fusarium solani on leaves of two passion fruit varieties, ‘Huangjinguo’ and ‘Ziguo 7’. Leaf samples were collected at 0 h, 24 h, and 48 h post-inoculation for RNA-sequencing (RNA-seq) analysis, and 3 370, 4 464, and 3 974 differentially expressed genes (DEGs) were identified at these stages. Gene Ontology (GO) analysis revealed associations with functions such as response to reactive oxygen species (ROS), response to hydrogen peroxide, and protein complex oligomerisation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted the enrichment of DEGs in the phenylpropanoid biosynthesis pathway, including genes such as ZX.06G0025070, ZX.01G0064640, ZX.04G0011040, ZX.05G0011380, all implicated in lignin biosynthesis. Weighted gene co-expression network analysis (WGCNA) identified three modules significantly associated with passion fruit stem rot resistance. Network analysis highlighted ZX.08G0013660 as the gene with the highest connectivity in these modules, featuring a leucine-rich repeat domain. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis further validated ZX.08G0013660 and other genes as potential candidates for passion fruit stem rot resistance. Overall, genes related to ROS, phenylpropanoid biosynthesis and leucine-rich repeat domain protein likely play critical roles in passion fruit stem rot resistance. This study provides new insights for breeding passion fruit varieties resistant to stem rot disease.
Keywords: candidate genes; disease resistance; Fusarium solani; Huangjinguo; RNA-sequencing; WGCNA
Received: December 7, 2023; Revised: June 13, 2024; Accepted: July 15, 2024; Prepublished online: March 19, 2025; Published: March 28, 2025 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
Supplementary files:
Download file | 161-2023-HORTSCI_Tab_S1-S11_ESM.xlsx File size: 384.94 kB |
Download file | 161_2023_Figures_ESM.indd File size: 4.15 MB |
References
- Abd-Ellatif S., Ibrahim A.A., Safhi F.A., Abdel Razik E.S., Kabeil S., Aloufi S., Alyamani A.A., Basuoni M.M., Alshamrani S.M., Elshafie H.S. (2022): Green synthesised of Thymus vulgaris chitosan nanoparticles induce relative WRKY-Genes expression in Solanum lycopersicum against Fusarium solani, the causal agent of root rot disease. Plants, 11: 3129.
Go to original source...
Go to PubMed...
- Bai H., Si H., Zang J., Pang X., Yu L., Cao H., Xing J., Zhang K., Dong J. (2021): Comparative proteomic analysis of the defense response to Gibberella stalk rot in maise and reveals that ZmWRKY83 is involved in plant disease resistance. Frontiers in Plant Science, 12: 694973.
Go to original source...
Go to PubMed...
- Belisário R., Robertson A.E., Vaillancourt L.J. (2022): Maize anthracnose stalk rot in the genomic era. Plant Disease, 106: 2281-2298.
Go to original source...
Go to PubMed...
- Catanzariti A.M., Do H.T., Bru P., De Sain M., Thatcher L.F., Rep M., Jones D.A. (2017): The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1. The Plant Journal, 89: 1195-1209.
Go to original source...
Go to PubMed...
- Chen Q., Song J., Du W.P., Xu L.Y., Jiang Y., Zhang J., Xiang X.L., Yu G.R. (2017): Identification, mapping, and molecular marker development for Rgsr8.1: A new quantitative trait locus conferring resistance to Gibberella stalk rot in maise (Zea mays L.). Frontiers in Plant Science, 8: 1355.
Go to original source...
Go to PubMed...
- Chen S.C., Ren J.J., Zhao H.J., Wang X.L., Wang T.H., Jin S.D., Wang Z.H., Li C.Y., Liu A.R., Lin X.M., Ahammed G.J.. (2019): Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance, and energy flow in cucumber roots. Phytopathology, 109: 972-982.
Go to original source...
Go to PubMed...
- Chitwood-Brown J., Vallad G.E., Lee T.G., Hutton S.F. (2021): Breeding for resistance to Fusarium wilt of tomato: A review. Genes (Basel), 12: 1673.
Go to original source...
Go to PubMed...
- Coleman J.J. (2016): The Fusarium solani species complex: Ubiquitous pathogens of agricultural importance. Molecular Plant Pathology, 17: 146-158.
Go to original source...
Go to PubMed...
- Coleman A.D., Maroschek J., Raasch L., Takken F., Ranf S., Hückelhoven R. (2021): The Arabidopsis leucine-rich repeat receptor-like kinase MIK2 is a crucial component of early immune responses to a fungal-derived elicitor. New Phytologist, 229: 3453-3466.
Go to original source...
Go to PubMed...
- Deng Y., Ning Y., Yang D.L., Zhai K., Wang G.L., He Z. (2020): Molecular basis of disease resistance and perspectives on breeding strategies for resistance improvement in crops. Molecular Plant, 13: 1402-1419.
Go to original source...
Go to PubMed...
- Dora S., Terrett O.M., Sánchez-Rodríguez C. (2022): Plant-microbe interactions in the apoplast: Communication at the plant cell wall. The Plant Cell, 34: 1532-1550.
Go to original source...
Go to PubMed...
- Du Q., Yang X., Zhang J., Zhong X., Kim K.S., Yang J., Xing G., Li X., Jiang Z., Li Q., Dong Y., Pan H. (2018): Over-expression of the Pseudomonas syringae harpin-encoding gene hrpZm confers enhanced tolerance to Phytophthora root and stem rot in transgenic soybean. Transgenic Research, 27: 277-288.
Go to original source...
Go to PubMed...
- Du F., Tao Y., Ma C., Zhu M., Guo C., Xu M. (2023): Effects of the quantitative trait locus qPss3 on inhibition of photoperiod sensitivity and resistance to stalk rot disease in maise. Theoretical and Applied Genetics, 136: 126.
Go to original source...
Go to PubMed...
- Duan C., Song F., Sun S., Guo C., Zhu Z., Wang X. (2019): Characterisation and molecular mapping of two novel genes resistant to Pythium stalk rot in maise. Phytopathology, 109: 804-809.
Go to original source...
Go to PubMed...
- Funnell-Harris D.L., Sattler S.E., O'Neill P.M., Gries T., Tetreault H.M., Clemente T.E. (2019): Response of sorghum enhanced in monolignol biosynthesis to stalk rot pathogens. Plant Disease, 103: 2277-2287.
Go to original source...
Go to PubMed...
- He J., Liu Y., Yuan D., Duan M., Liu Y., Shen Z., Yang C., Qiu Z., Liu D., Wen P., Huang J., Fan D., Xiao S., Xin Y., Chen X., Jiang L., Wang H., Yuan L., Wan J. (2020): An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proceedings of the National Academy of Sciences, 117: 271-277.
Go to original source...
Go to PubMed...
- Jacob P., Hige J., Dangl J.L. (2023): Is localised acquired resistance the mechanism for effector-triggered disease resistance in plants? Nature Plants, 9: 1184-1190.
Go to original source...
Go to PubMed...
- Li J., Luan Q., Han J., Chen C., Ren Z. (2022): CsMYB60 confers enhanced resistance to Fusarium solani by increasing proanthocyanidin biosynthesis in cucumber. Phytopathology, 112: 588-594.
Go to original source...
Go to PubMed...
- Liu Y., Guo Y., Ma C., Zhang D., Wang C., Yang Q. (2016): Transcriptome analysis of maise resistance to Fusarium graminearum. BMC Genomics, 17: 477.
Go to original source...
Go to PubMed...
- Liu Y., Liu Q., Li X., Zhang Z., Ai S., Liu C., Ma F., Li C. (2023): MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. Plant Physiology, 192: 2015-2029.
Go to original source...
Go to PubMed...
- Ma C., Ma X., Yao L., Liu Y., Du F., Yang X., Xu M. (2017): qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maise. Theoretical and Applied Genetics, 130: 1723-1734.
Go to original source...
Go to PubMed...
- Ma P., Liu E., Zhang Z., Li T., Zhou Z., Yao W., Chen J., Wu J., Xu Y., Zhang H. (2023): Genetic variation in ZmWAX2 confers maise resistance to Fusarium verticillioides. Plant Biotechnology Journal, 21: 1812-1826.
Go to original source...
Go to PubMed...
- Miao W., Xiao X., Wang Y., Ge L., Yang Y., Liu Y., Liao Y., Guan Z., Chen S., Fang W., Chen F., Zhao S. (2023): CmWRKY6-1-CmWRKY15-like transcriptional cascade negatively regulates the resistance to Fusarium oxysporum infection in Chrysanthemum morifolium. Horticulture Research, 10: uhad101.
Go to original source...
- Mittler R., Zandalinas S.I., Fichman Y., Van Breusegem F. (2022): Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology,
Go to original source...
- 23: 663-679.
- Singh S.K., Shree A., Verma S., Singh K., Kumar K., Srivastava V., Singh R., Saxena S., Singh A.P., Pandey A., Verma P.K. (2023): The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility. The Plant Cell, 35: 1134-1159.
Go to original source...
Go to PubMed...
- Thapa G., Gunupuru L.R., Hehir J.G., Kahla A., Mullins E., Doohan F.M. (2018): A pathogen-responsive leucine rich receptor like kinase contributes to Fusarium resistance in cereals. Frontiers in Plant Science, 9: 867.
Go to original source...
Go to PubMed...
- Tronchet M., Balagué C., Kroj T., Jouanin L., Roby D. (2010): Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Molecular Plant Pathology,
Go to original source...
Go to PubMed...
- 11: 83-92.
- Wang C., Yang Q., Wang W., Li Y., Guo Y., Zhang D., Ma X., Song W., Zhao J., Xu M. (2017a): A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maise. New Phytologist, 215: 1503-1515.
Go to original source...
Go to PubMed...
- Wang Y., Sheng L., Zhang H., Du X., An C., Xia X., Chen F., Jiang J., Chen S. (2017b): CmMYB19 over-expression improves aphid tolerance in chrysanthemum by promoting lignin synthesis. International Journal of Molecular Sciences, 18: 619.
Go to original source...
Go to PubMed...
- Wu Y., Tian Q., Huang W., Liu J., Xia X., Yang X., Mou H. (2020): Identification and evaluation of reference genes for quantitative real‑time PCR analysis in Passiflora edulis under stem rot condition. Molecular Biology Reports,
Go to original source...
- 47: 2951-2962.
- Wu Y., Huang W., Tian Q., Liu J., Xia X., Yang X., Mou H. (2021): Comparative transcriptomic analysis reveals the cold acclimation during chilling stress in sensitive and resistant passion fruit (Passiflora edulis) cultivars. PeerJ, 9: e10977.
Go to original source...
Go to PubMed...
- Xie S.Y., Ma T., Zhao N., Zhang X., Fang B., Huang L. (2022): Whole-genome sequencing and comparative genome analysis of Fusarium solani-melongenae causing Fusarium root and stem rot in sweetpotatoes. Microbiology Spectrum, 10: e0068322.
Go to original source...
Go to PubMed...
- Xiong X.P., Sun S.C., Zhu Q.H., Zhang X.Y., Li Y.J., Liu F., Xue F., Sun J. (2021): The cotton lignin biosynthetic gene Gh4CL30 regulates lignification and phenolic content and contributes to Verticillium wilt resistance. Molecular Plant-Microbe Interactions, 34: 240-254.
Go to original source...
Go to PubMed...
- Ye J., Guo Y., Zhang D., Zhang N., Wang C., Xu M. (2013): Cytological and molecular characterisation of quantitative trait locus qRfg1, which confers resistance to Gibberella stalk rot in maise. Molecular Plant-Microbe Interactions, 26: 1417-1428.
Go to original source...
Go to PubMed...
- Ye J., Zhong T., Zhang D., Ma C., Wang L., Yao L., Zhang Q., Zhu M., Xu M. (2019): The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maise. Molecular Plant, 12: 360-373.
Go to original source...
Go to PubMed...
- Zhang N., Lv F., Qiu F., Han D., Xu Y., Liang W. (2023): Pathogenic fungi neutralise plant-derived ROS via Srpk1 deacetylation. The EMBO Journal, 42: e112634.
Go to original source...
Go to PubMed...
- Zhao M., Fan H., Tu Z., Cai G., Zhang L., Li A., Xu M. (2022): Stable reference gene selection for quantitative real-time PCR normalisation in Passion fruit (Passiflora edulis Sims.). Molecular Biology Reports, 49: 5985-5995.
Go to original source...
Go to PubMed...
- Zhou X., Liao H., Chern M., Yin J., Chen Y., Wang J., Zhu X., Chen Z., Yuan C., Zhao W., Wang J., Li W., He M., Ma B., Wang J., Qin P., Chen W., Wang Y., Liu J., Qian Y., Wang W., Wu X., Li P., Zhu L., Li S., Ronald P.C., Chen X. (2018): Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences, 115: 3174-3179.
Go to original source...
Go to PubMed...
- Zhu Z., Zhao S., Wang C. (2022): β-carboline alkaloids from Peganum harmala inhibit Fusarium oxysporum from Codonopsis radix through damaging the cell membrane and inducing ROS accumulation. Pathogens, 11: 1341.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.