Hort. Sci. (Prague), 2025, 52(1):1-14 | DOI: 10.17221/19/2024-HORTSCI
Harnessing CRISPR/Cas9 system to engineer disease resistance in solanaceous crops: Current progress and future prospectsReview
- 1 Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
- 2 Biotechnology Division, Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
Crops belonging to the Solanaceae family, including potato, tomato, pepper, and tobacco possess considerable economic importance worldwide. However, their production is continuously under threat from plant pathogens. Farmers typically rely on resistant cultivars carrying one or several disease resistance (R) genes introduced through conventional breeding. Over time, a competitive host-pathogen coevolution can lead to major resistance breakdown. Genome editing is a significant research tool and avenue for the genetic improvement of crop species, as it enables the precise introduction of targeted genetic changes. This technology has been successfully used in various food crops, including those belonging to the Solanaceae family. The advent of the CRISPR/Cas9 genome editing system allows the rapid knockout of desirable genes. Plant pathogens often exploit host genes known as susceptibility (S) genes to facilitate their proliferation. Inactivation of these S genes may reduce the pathogen’s ability to infect plants and confer durable and broad-spectrum resistance. This review provides an overview of the current application of CRISPR/Cas9 to disrupt the S genes for the development of disease-resistant solanaceous crops. The technological limitations and potential strategies for overcoming these challenges are discussed.
Keywords: genome editing; pepper; potato; susceptibility genes; tobacco; tomato
Received: January 26, 2024; Revised: March 30, 2024; Accepted: June 4, 2024; Prepublished online: February 10, 2025; Published: March 28, 2025 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Ali Q., Yu C., Hussain A., Ali M., Ahmar S., Sohail M.A., Riaz M., Ashraf M.F., Abdalmegeed D., Wang X., Imran M., Manghwar H., Zhou L. (2022): Genome engineering technology for durable disease resistance: Recent progress and future outlooks for sustainable agriculture. Frontiers in Plant Science, 13: 860281.
Go to original source...
Go to PubMed...
- Atarashi H., Jayasinghe W.H., Kwon J., Kim H., Taninaka Y., Igarashi M., Ito K., Yamada T., Masuta C., Nakahara K.S. (2020): Artificially edited alleles of the eukaryotic translation initiation factor 4E1 gene differentially reduce susceptibility to cucumber mosaic virus and potato virus Y in tomato. Frontiers in Microbiology, 11: 564310.
Go to original source...
Go to PubMed...
- Bai Y., Pavan S., Zheng Z., Zappel N.F., Reinstädler A., Lotti C., De Giovanni C., Ricciardi L., Lindhout P., Visser R., Theres K., Panstruga R. (2008): Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Molecular Plant-Microbe Interactions, 21: 30-39.
Go to original source...
Go to PubMed...
- Belhaj K., Chaparro-Garcia A., Kamoun S., Patron N.J., Nekrasov V. (2015): Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 32: 76-84.
Go to original source...
Go to PubMed...
- Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T., Nickstadt A., Bonas U. (2009): Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326: 1509-1512.
Go to original source...
Go to PubMed...
- Bogdanove A.J., Voytas D.F. (2011): TAL effectors: Customizable proteins for DNA targeting. Science, 333: 1843-1846.
Go to original source...
Go to PubMed...
- Bozkurt T.O., Belhaj K., Dagdas Y.F., Chaparro-Garcia A., Wu C.H., Cano L.M., Kamoun S. (2015): Rerouting of plant late endocytic trafficking toward a pathogen interface.
Go to original source...
- Traffic, 16: 204-226.
- Brooks C., Nekrasov V., Lippman Z.B., Van Eck J. (2014): Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology, 166: 1292-1297.
Go to original source...
Go to PubMed...
- Chen L.Q., Hou B.H., Lalonde S., Takanaga H., Hartung M.L., Qu X.Q., Guo W.J., Kim J.G., Underwood W., Chaudhuri B., Chermak D., Antony G., White F.F., Somerville S.C., Mudgett M.B., Frommer W.B. (2010): Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468: 527-532.
Go to original source...
Go to PubMed...
- Chen L.Q., Qu X.Q., Hou B.H., Sosso D., Osorio S., Fernie A.R., Frommer W.B. (2012): Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 335: 207-211.
Go to original source...
Go to PubMed...
- Christian M., Voytas D.F. (2015): Engineered TAL effector proteins: Versatile reagents for manipulating plant genomes. In: Zhang F., Puchta H., Thomson J. (eds): Advances in New Technology for Targeted Modification of Plant Genomes. New York, NY: Springer New York: 55-72.
Go to original source...
- Cui H., Tsuda K., Parker J.E. (2015): Effector-triggered immunity: From pathogen perception to robust defense. Annual Review of Plant Biology, 66: 487-511.
Go to original source...
Go to PubMed...
- Daboussi F., Stoddard T.J., Zhang F. (2015): Engineering meganuclease for precise plant genome modification. In: Zhang F., Puchta H., Thomson J. (eds): Advances in New Technology for Targeted Modification of Plant Genomes. New York, NY: Springer New York: 21-38.
Go to original source...
- Debbarma J., Saikia B., Singha D.L., Das D., Keot A.K.,
- Maharana J., Velmurugan N., Arunkumar K.P., Reddy P.S., Chikkaputtaiah C. (2023): CRISPR/Cas9-mediated mutation in XSP10 and SlSAMT genes impart genetic tolerance to fusarium wilt disease of tomato (Solanum lycopersicum L.). Genes (Basel), 14: 488.
Go to original source...
Go to PubMed...
- Deltcheva E., Chylinski K., Sharma C.M., Gonzales K., Chao Y., Pirzada Z.A., Eckert M.R., Vogel J., Charpentier E. (2011): CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 471: 602-607.
Go to original source...
Go to PubMed...
- Doudna J.A., Charpentier E. (2014): Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346: 1258096.
Go to original source...
Go to PubMed...
- Duprat A., Caranta C., Revers F., Menand B., Browning K.S., Robaglia C. (2002): The Arabidopsis eukaryotic initiation factor (iso)4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant Journal, 32: 927-934.
Go to original source...
Go to PubMed...
- FAOSTAT (2021): Crops and livestock products. Available at https://www.fao.org/faostat/en/#data/QCL/visualize (accessed June 16, 2023).
- Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. (2013): High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31: 822-826.
Go to original source...
Go to PubMed...
- Fujimura T., Sato S., Tajima T., Arai M. (2015): Powdery mildew resistance in the Japanese domestic tobacco cultivar Kokubu is associated with aberrant splicing of MLO orthologs. Plant Pathology, 65: 1358-1365.
Go to original source...
- Gawehns F., Cornelissen B.J., Takken F.L. (2013): The potential of effector-target genes in breeding for plant innate immunity. Microbial Biotechnology, 6: 223-229.
Go to original source...
Go to PubMed...
- Gibriel H.A.Y., Thomma B.P.H.J., Seidl M.F. (2016): The age of effectors: Genome-based discovery and applications. Phytopathology, 106: 1206-1212.
Go to original source...
Go to PubMed...
- Hamdan M.F., Karlson C.K.S., Teoh E.Y., Lau S.E., Tan B.C. (2022): Genome editing for sustainable crop improvement and mitigation of biotic and abiotic stresses. Plants, 11: 2625.
Go to original source...
Go to PubMed...
- Hong Y., Meng J., He X., Zhang Y., Liu Y., Zhang C., Qi H., Luan Y. (2021): Editing miR482b and miR482c simultaneously by CRISPR/Cas9 enhanced tomato resistance to Phytophthora infestans. Phytopathology, 111: 1008-1016.
Go to original source...
Go to PubMed...
- Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. (2013): DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31: 827-832.
Go to original source...
Go to PubMed...
- Hui S., Shi Y., Tian J., Wang L., Li Y., Wang S., Yuan M. (2019): TALE-carrying bacterial pathogens trap host nuclear import receptors for facilitation of infection of rice. Molecular Plant Pathology, 20: 519-532.
Go to original source...
Go to PubMed...
- Huibers R.P., Loonen A.E., Gao D., Van den Ackerveken G., Visser R.G., Bai Y. (2013): Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1.
Go to original source...
- PLoS One, 8: E67467.
- Iyer A.S., McCouch S.R. (2004): The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant-Microbe Interactions, 17: 1348-1354.
Go to original source...
Go to PubMed...
- Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. (2012): A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.
Go to original source...
- Science, 337: 816.
- Jones J.D., Dangl J.L. (2006): The plant immune system. Nature, 444: 323-329.
Go to original source...
Go to PubMed...
- Jørgensen I.H. (1992): Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica, 63: 141-152.
Go to original source...
- Kieu N.P., Lenman M., Wang E.S., Petersen B.L., Andreasson E. (2021): Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Scientific Reports,
Go to original source...
Go to PubMed...
- 11: 4487.
- Kim Y.B., Komor A.C., Levy J.M., Packer M.S., Zhao K.T., Liu D.R. (2017): Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology, 35: 371-376.
Go to original source...
Go to PubMed...
- Koseoglou E., van der Wolf J.M., Visser R.G.F., Bai Y. (2022): Susceptibility reversed: Modified plant susceptibility genes for resistance to bacteria. Trends in Plant Science, 27: 69-79.
Go to original source...
Go to PubMed...
- Krasileva K.V., Dahlbeck D., Staskawicz B.J. (2010): Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell,
Go to original source...
Go to PubMed...
- 22: 2444-2458.
- Kuroiwa K., Thenault C., Nogué F., Perrot L., Mazier M., Gallois J.-L. (2022): CRISPR-based knock-out of eIF4E2 in a cherry tomato background successfully recapitulates resistance to pepper veinal mottle virus. Plant Science, 316: 111160.
Go to original source...
Go to PubMed...
- Lapin D., Van den Ackerveken G. (2013): Susceptibility to plant disease: More than a failure of host immunity. Trends in Plant Science, 18: 546-554.
Go to original source...
Go to PubMed...
- Le N.T., Tran H.T., Bui T.P., Nguyen G.T., Van Nguyen D., Ta D.T., Trinh D.D., Molnar A., Pham N.B., Chu H.H., Do P.T. (2022): Simultaneously induced mutations in eIF4E genes by CRISPR/Cas9 enhance PVY resistance in tobacco.
Go to original source...
- Scientific Reports, 12: 14627.
- Li P., Zhang L., Mo X., Ji H., Bian H., Hu Y., Majid T., Long J., Pang H., Tao Y., Ma J., Dong H. (2019): Rice aquaporin PIP1;3 and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. Journal of Experimental Botany, 70: 3057-3073.
Go to original source...
Go to PubMed...
- Li R., Maioli A., Yan Z., Bai Y., Valentino D., Milani A.M., Pompili V., Comino C., Lanteri S., Moglia A., Acquadro A. (2022): CRISPR/Cas9-based knock-out of the PMR4 gene reduces susceptibility to late blight in two tomato cultivars. International Journal of Molecular Sciences, 23: 14542.
Go to original source...
Go to PubMed...
- Liang Z., Chen K., Yan Y., Zhang Y., Gao C. (2018a): Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnology Journal, 16: 2053-2062.
Go to original source...
Go to PubMed...
- Liang Z., Chen K., Zhang Y., Liu J., Yin K., Qiu J.L., Gao C. (2018b): Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nature Protocols, 13: 413-430.
Go to original source...
Go to PubMed...
- Lin Q., Zong Y., Xue C., Wang S., Jin S., Zhu Z., Wang Y., Anzalone A.V., Raguram A., Doman J.L., Liu D.R., Gao C. (2020): Prime genome editing in rice and wheat. Nature Biotechnology, 38: 582-585.
Go to original source...
Go to PubMed...
- Liu H., Ding Y., Zhou Y., Jin W., Xie K., Chen L.L. (2017): CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants. Molecular Plant, 10: 530-532.
Go to original source...
Go to PubMed...
- Maeder M.L., Thibodeau-Beganny S., Osiak A., Wright D.A., Anthony R.M., Eichtinger M., Jiang T., Foley J.E., Winfrey R.J., Townsend J.A., Unger-Wallace E., Sander J.D., Muller-Lerch F., Fu F., Pearlberg J., Gobel C., Dassie J.P., Pruett-Miller S.M., Porteus M.H., Sgroi D.C., Iafrate A.J., Dobbs D., McCray P.B., Jr., Cathomen T., Voytas D.F., Joung J.K. (2008): Rapid 'open-source' engineering of customized zinc-finger nucleases for highly efficient gene modification. Molecular Cell, 31: 294-301.
Go to original source...
Go to PubMed...
- Makhotenko A.V., Khromov A.V., Snigir E.A., Makarova S.S., Makarov V.V., Suprunova T.P., Kalinina N.O., Taliansky M.E. (2019): Functional analysis of Coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing. Doklady. Biochemistry and Biophysics, 484: 88-91.
Go to original source...
Go to PubMed...
- McDonald B., Linde C. (2002): The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica, 124: 163-180.
Go to original source...
- Meng H., Sun M., Jiang Z., Liu Y., Sun Y., Liu D., Jiang C., Ren M., Yuan G., Yu W., Feng Q., Yang A., Cheng L., Wang Y. (2021): Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianae. Scientific Reports, 11: 809.
Go to original source...
Go to PubMed...
- Miller J.C., Tan S., Qiao G., Barlow K.A., Wang J., Xia D.F., Meng X., Paschon D.E., Leung E., Hinkley S.J., Dulay G.P., Hua K.L., Ankoudinova I., Cost G.J., Urnov F.D., Zhang H.S., Holmes M.C., Zhang L., Gregory P.D., Rebar E.J. (2011): A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29: 143-148.
Go to original source...
Go to PubMed...
- Minkenberg B., Zhang J., Xie K., Yang Y. (2019): CRISPR-PLANT v2: An online resource for highly specific guide RNA spacers based on improved off-target analysis. Plant Biotechnology Journal, 17: 5-8.
Go to original source...
Go to PubMed...
- Mishra R., Mohanty J.N., Mahanty B., Joshi R.K. (2021): A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.). Planta, 254: 5.
Go to original source...
Go to PubMed...
- Moscou M.J., Bogdanove A.J. (2009): A simple cipher governs DNA recognition by TAL effectors. Science, 326: 1501.
Go to original source...
Go to PubMed...
- Nekrasov V., Staskawicz B., Weigel D., Jones J.D., Kamoun S. (2013): Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease.
Go to original source...
- Nature Biotechnology, 31: 691-693.
- Nekrasov V., Wang C., Win J., Lanz C., Weigel D., Kamoun S. (2017): Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports, 7: 482.
Go to original source...
Go to PubMed...
- Niu Z., Klindworth D.L., Yu G., L Friesen T., Chao S., Jin Y., Cai X., Ohm J.B., Rasmussen J.B., Xu S.S. (2014): Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum. Theoretical and Applied Genetics, 127: 969-980.
Go to original source...
Go to PubMed...
- Noureen A., Khan M.Z., Amin I., Zainab T., Mansoor S. (2022): CRISPR/Cas9-mediated targeting of susceptibility factor eIF4E-enhanced resistance against potato virus Y. Frontiers in Genetics, 13: 922019.
Go to original source...
Go to PubMed...
- Oerke E.C., Dehne H.W. (2004): Safeguarding production - losses in major crops and the role of crop protection. Crop Protection, 23: 275-285.
Go to original source...
- Oh C.S., Beer S.V. (2007): AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiology, 145: 426-436.
Go to original source...
Go to PubMed...
- Ortigosa A., Gimenez-Ibanez S., Leonhardt N., Solano R. (2019): Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnology Journal, 17: 665-673.
Go to original source...
Go to PubMed...
- Paques F., Duchateau P. (2007): Meganucleases and DNA double-strand break-induced recombination: Perspectives for gene therapy. Current Gene Therapy, 7: 49-66.
Go to original source...
Go to PubMed...
- Pattanayak V., Lin S., Guilinger J.P., Ma E., Doudna J.A., Liu D.R. (2013): High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 31: 839-843.
Go to original source...
Go to PubMed...
- Peterson B.A., Haak D.C., Nishimura M.T., Teixeira P.J., James S.R., Dangl J.L., Nimchuk Z.L. (2016): Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS One, 11: E0162169.
Go to original source...
Go to PubMed...
- Phan H.T.T., Jones D.A.B., Rybak K., Dodhia K.N., Lopez-Ruiz F.J., Valade R., Gout L., Lebrun M.H., Brunner P.C., Oliver R.P., Tan K.C. (2019): Low amplitude boom-and-bust cycles define the septoria nodorum blotch interaction. Frontier in Plant Science, 10: 1785.
Go to original source...
Go to PubMed...
- Pramanik D., Shelake R.M., Park J., Kim M.J., Hwang I., Park Y., Kim J.Y. (2021): CRISPR/Cas9-mediated generation of pathogen-resistant tomato against Tomato Yellow Leaf Curl Virus and powdery mildew. International Journal of Molecular Sciences, 22: 1878.
Go to original source...
Go to PubMed...
- Razzaq H.A., Ijaz S., Haq I.U., Khan I.A. (2022): Functional inhibition of the StERF3 gene by dual targeting through CRISPR/Cas9 enhances resistance to the late blight disease in Solanum tuberosum L. Molecular Biology Reports,
Go to original source...
- 49: 11675-11684.
- Ruffel S., Dussault M.H., Palloix A., Moury B., Bendahmane A., Robaglia C., Caranta C. (2002): A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant Journal, 32: 1067-1075.
Go to original source...
Go to PubMed...
- Ruyi R., Qiang Z., Futai N., Qiu J., Xiuqing W., Jicheng W. (2021): Breeding for PVY resistance in tobacco LJ911 using CRISPR/Cas9 technology. Crop Breeding and Applied Biotechnology, 21: E31682116.
Go to original source...
- Sander J.D., Joung J.K. (2014): CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 32: 347-355.
Go to original source...
Go to PubMed...
- Santillán Martínez M.I., Bracuto V., Koseoglou E., Appiano M., Jacobsen E., Visser R.G.F., Wolters A.-M.A., Bai Y. (2020): CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biology, 20: 284.
Go to original source...
Go to PubMed...
- Scheben A., Wolter F., Batley J., Puchta H., Edwards D. (2017): Towards CRISPR/Cas crops - bringing together genomics and genome editing. New Phytologist,
Go to original source...
- 216: 682-698.
- Slaymaker I.M., Gao L., Zetsche B., Scott D.A., Yan W.X., Zhang F. (2016): Rationally engineered Cas9 nucleases with improved specificity. Science, 351: 84-88.
Go to original source...
Go to PubMed...
- Smith J., Grizot S., Arnould S., Duclert A., Epinat J.C., Chames P., Prieto J., Redondo P., Blanco F.J., Bravo J., Montoya G., Paques F., Duchateau P. (2006): A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research, 34: E149.
Go to original source...
Go to PubMed...
- Sun K., Wolters A.-M., Vossen J., Rouwet M., Loonen A., Jacobsen E., Visser R., Bai Y. (2016): Silencing of six susceptibility genes results in potato late blight resistance. Transgenic Research, 25.
Go to original source...
Go to PubMed...
- Thomazella D.P.T., Seong K., Mackelprang R., Dahlbeck D., Geng Y., Gill U.S., Qi T., Pham J., Giuseppe P., Lee C.Y., Ortega A., Cho M.-J., Hutton S.F., Staskawicz B. (2021): Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences of the United States of America, 118: E2026152118.
Go to original source...
Go to PubMed...
- Urnov F.D., Miller J.C., Lee Y.L., Beausejour C.M., Rock J.M., Augustus S., Jamieson A.C., Porteus M.H., Gregory P.D., Holmes M.C. (2005): Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 435: 646-651.
Go to original source...
Go to PubMed...
- Urnov F.D., Rebar E.J., Holmes M.C., Zhang H.S., Gregory P.D. (2010): Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11: 636-646.
Go to original source...
Go to PubMed...
- van Damme M., Huibers R.P., Elberse J., Van den Ackerveken G. (2008): Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant Journal, 54: 785-793.
Go to original source...
Go to PubMed...
- van Schie C.C.N, Takken F.L.W. (2014): Susceptibility genes 101: How to be a good host. Annual Review of Phytopathology, 52: 551-581.
Go to original source...
Go to PubMed...
- Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. (2014): Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32: 947-951.
Go to original source...
Go to PubMed...
- Woo J.W., Kim J., Kwon S.I., Corvalan C., Cho S.W., Kim H., Kim S.G., Kim S.T., Choe S., Kim J.S. (2015): DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 33: 1162-1164.
Go to original source...
Go to PubMed...
- Wulff B.B., Horvath D.M., Ward E.R. (2011): Improving immunity in crops: New tactics in an old game. Current Opinion in Plant Biology, 14: 468-476.
Go to original source...
Go to PubMed...
- Wulff B.B., Moscou M.J. (2014): Strategies for transferring resistance into wheat: From wide crosses to GM cassettes. Frontiers in Plant Science, 5: 692.
Go to original source...
Go to PubMed...
- Xuebo W., Dandan L., Xiaolei T., Changchun C., Xinyao Z., Zhan S., Aiguo Y., Xiankui F., Dan L. (2023): CRISPR/Cas9-mediated targeted mutagenesis of two homoeoalleles in tobacco confers resistance to powdery mildew. Euphytica, 219: 67.
Go to original source...
- Yoon Y.J., Venkatesh J., Lee J.H., Kim J., Lee H.E., Kim D.S., Kang B.C. (2020): Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus. Frontiers in Plant Science, 11: 1098.
Go to original source...
Go to PubMed...
- Zeng X., Luo Y., Vu N.T.Q., Shen S., Xia K., Zhang M. (2020): CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biology, 20: 313.
Go to original source...
Go to PubMed...
- Zhang L., Hu Y., Li P., Wang X., Dong H. (2019): Silencing of an aquaporin gene diminishes bacterial blight disease in rice. Australasian Plant Pathology, 48: 143-158.
Go to original source...
- Zhang Y., Liang Z., Zong Y., Wang Y., Liu J., Chen K., Qiu J.L., Gao C. (2016): Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 7: 12617.
Go to original source...
Go to PubMed...
- Zhang Y., Zhao L., Zhao J., Li Y., Wang J., Guo R., Gan S., Liu C.J., Zhang K. (2017): S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiology, 175: 1082-1093.
Go to original source...
Go to PubMed...
- Zheng Z., Nonomura T., Appiano M., Pavan S., Matsuda Y., Toyoda H., Wolters A.M., Visser R.G., Bai Y. (2013): Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS One, 8: E70723.
Go to original source...
Go to PubMed...
- Zipfel C. (2014): Plant pattern-recognition receptors. Trends in Immunology, 35: 345-351.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.