Hort. Sci. (Prague), 2024, 51(3):202-211 | DOI: 10.17221/53/2023-HORTSCI

Physiological and biochemical characteristics of cucumber seedlings under different levels drought stress (PEG 6000 concentrations)Original Paper

Xiaoyun Wang1, Hongyan Sun2, Xin Lian2,3, Jia Feng2, Jinghang Zhao2, Yibo Wang2, Yanru Liu2
1 Institute of Soil and Water Conservation, Shanxi Agricultural University, Taiyuan, P. R. China
2 School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, P. R. China

The effects of different drought stress levels on the plant growth, physiological and biochemical characteristics of cucumber (Cucumis sativus L.) seedlings were investigated using different mass fractions of polyethylene glycol (PEG) 6000 (0, 2.5, 5, 10%) to simulate the drought stress. The results showed that the plant height, root length, leaf dry weight (DW), stem DW, root DW, and plant DW all showed no significant difference under mild (2.5% PEG 6000) drought stress, while they exhibited a decreasing trend with an increasing level of PEG. The changing trend in the photosynthetic efficiency, chlorophyll a, and carotenoid content was consistent with the growth index under drought stress. Besides, the content of chlorophyll b in the cucumber seedlings increased under moderate (5% PEG 6000) drought stress, but decreased under severe (10% PEG 6000) drought stress. However, the antioxidase activities, soluble protein content, malondialdehyde (MDA) content, total phenols, and total flavonoid content in the cucumber seedlings increased gradually with the increase in the mass fraction of PEG. The results indicated that higher the level of drought stress, the higher inhibition on the seedling growth or more severe damage on the cell membrane, and higher contents of total phenols and flavonoids were obtained.

Keywords: Cucumber (Cucumis sativus L.); antioxidase; chlorophyll content; flavonoids; phenols; photosynthesis.

Received: May 18, 2023; Revised: March 31, 2024; Accepted: April 3, 2024; Published: September 29, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wang X, Sun H, Lian X, Feng J, Zhao J, Wang Y, Liu Y. Physiological and biochemical characteristics of cucumber seedlings under different levels drought stress (PEG 6000 concentrations). Hort. Sci. (Prague). 2024;51(3):202-211. doi: 10.17221/53/2023-HORTSCI.
Download citation

References

  1. Apel K., Hirt H. (2004): Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373-399. Go to original source... Go to PubMed...
  2. Bharti N., Yadav D., Barnawal D., Maji D., Kalra A. (2013): Exiguobacterium oxidotolerans a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World Journal of Microbiology Biotechnology, 29: 379-387. Go to original source... Go to PubMed...
  3. Blum A. (2017): Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell and Environment, 40: 4-10. Go to original source... Go to PubMed...
  4. Bradford M.M. (1976): Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. Go to original source...
  5. Chen J., Zhao X., Li Y., Luo Y., Zhang Y., Liu M., Li Y. (2021): Physiological responses of Agriophyllum squarrosum and Setaria viridis to drought and re-watering. Scientific Reports, 11: 18663. Go to original source... Go to PubMed...
  6. Chen J., Zhao X., Zhang Y., Li Y., Cong A. (2019): Effects of drought and rehydration on the physiological responses of Artemisia halodendron. Water, 11: 793. Go to original source...
  7. Close T.J. (1996): Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 97: 795-803. Go to original source...
  8. Cui Q., Li Y., He X., Li S., Zhong X., Liu B., Zhang D., Li Q. (2019): Physiological and iTRAQ based proteomics analyses reveal the mechanism of elevated CO2 concentration alleviating drought stress in cucumber (Cucumis sativus L.) seedlings. Plant Physiology and Biochemistry, 143: 142-153. Go to original source... Go to PubMed...
  9. de Araújo F.F., de Paulo Farias D., Neri-Numa I.A., Pastore G.M. (2021): Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry, 338: 127535. Go to original source... Go to PubMed...
  10. Du H., Dong Q., Liu H., Wang W., Kurtenbach R. (2022): Polyamines conjugated to plasma membrane function in enhancing the tolerance of cucumber seedlings to osmotic stress via elevating H+-ATPase activity. Plant Physiology and Biochemistry, 170: 64-74. Go to original source... Go to PubMed...
  11. Ghani M.I., Saleem S., Rather S.A., Rehmani M.S., Alamri S., Rajput V.D., Kalaji H.M., Saleem N., Sial T.A., Liu M. (2022): Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere, 289: 133202. Go to original source... Go to PubMed...
  12. Hajizadeh H.S., Rezaei S., Yari F., Okatan V. (2023): In vitro simulation of drought stress in some Iranian Damask rose landraces. Horticultural Science (Prague), 50: 45-60. Go to original source...
  13. Hirayama T., Shinozaki K. (2010): Research on plant abiotic stress responses in the postgenome era: past, present and future. Plant Journal, 61: 1041-1052. Go to original source... Go to PubMed...
  14. Lichtenthaler H.K. (1987): Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-382. Go to original source...
  15. Janicka-Russak M., Kabała K., Burzyński M., (2012): Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots. Journal of Experimental Botany, 63: 4133-4142. Go to original source... Go to PubMed...
  16. Li M., Li Y., Zhang W., Li S., Gao Y., Ai X., Zhang D., Liu B., Li Q. (2018): Metabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leaves. Analytical Biochemistry, 559: 71-85. Go to original source... Go to PubMed...
  17. Li Y., Zhang W., Zhang D., Zheng Y., Xu Y., Liu B., Li Q. (2022): Mechanism of [CO2] enrichment alleviated drought stress in the roots of cucumber seedlings revealed via proteomic and biochemical analysis. International Journal of Molecular Sciences, 23: 14911. Go to original source... Go to PubMed...
  18. Ma D., Sun D., Wang C., Li Y., Guo T. (2014): Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiology and Biochemistry, 80: 60-66. Go to original source... Go to PubMed...
  19. Miller G.A.D., Suzuki N., Ciftci-Yilmaz S., Mittler R. (2010): Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell and Environment, 33: 453-467. Go to original source... Go to PubMed...
  20. Ming D., Pei Z., Naeem M., Gong H., Zhou W. (2012): Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. Journal of Agronomy and Crop Science, 198: 14-26. Go to original source...
  21. Muñoz-González I., Ruiz-Capillas C., Salvador M, Herrero A.M. (2020): Emulsion gels as delivery systems for phenolic compounds: Nutritional, technological and structural properties. Food Chemistry, 339: 128049. Go to original source... Go to PubMed...
  22. Najarian M., Mohammadi-Ghehsareh A., Fallahzade J., Peykanpour E. (2018): Responses of cucumber (Cucumis sativus L.) to ozonated water under varying drought stress intensities. Journal of Plant Nutrition, 41 : 1-9. Go to original source...
  23. Oteiza P.I., Erlejman A.G., Verstraeten S.V., Keen C.L., Fraga C.G. (2005): Flavonoidmembrane interactions: a protective role of flavonoids at the membrane surface. Clinical and Developmental Immunology, 12: 19-25. Go to original source... Go to PubMed...
  24. Qi J., Song C.P., Wang B., Zhou J., Kangasjärvi J., Zhu J.K., Gong Z. (2018): Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60: 805-826. Go to original source... Go to PubMed...
  25. Sachdev S., Ansari S.A., Ansari M.I., Fujita M., Hasanuzzaman M. (2021): Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants, 10: 277. Go to original source... Go to PubMed...
  26. Singleton V.L., Orthofer R., Lamuela-Raventos R.M. (1999): Analysis of total phenols and other oxidation substrates and antioxidants by means of folinciocalteu reagent. Methods In Enzymology, 299: 152-178. Go to original source...
  27. Sun Y., Wang H., Liu S., Peng X. (2016): Exogenous application of hydrogen peroxide alleviates drought stress in cucumber seedlings. South African Journal of Botany, 106: 23-28. Go to original source...
  28. Wu F., Zhang G., Dominy P. (2003): Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 50: 67-78. Go to original source...
  29. Zahedi S.M., Moharrami F., Sarikhani S., Padervand M. (2020): Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific Reports, 10: 1-18. Go to original source... Go to PubMed...
  30. Zhang T., Zhang W., Li D., Zhou F., Chen X., Li C., Yu S., Brestic M., Liu Y., Yang X. (2021): Glycinebetaine: a versatile protectant to improve rice performance against aluminium stress by regulating aluminium uptake and translocation. Plant Cell Reports, 40: 2397-2407. Go to original source...
  31. Zhishen J., Mengcheng T., Jianming W. (1999): The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555-559. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.