Hort. Sci. (Prague), 2024, 51(3):189-201 | DOI: 10.17221/5/2023-HORTSCI

Molecular, morphological and phytochemical characterization of some watermelon (Citrullus lanatus L.) genotypesOriginal Paper

Ömer Faruk Coşkun1, Osman Gülşen2
1 Department of Horticulture, Faculty of Agriculture, Hatay Mustafa Kemal University, Hatay, Türkiye
2 Department of Horticulture, Faculty of Agriculture, Erciyes University, Kayseri, Türkiye

Watermelon (Citrullus lanatus L.) is grown in tropical and temperate regions and an economically important crop. Characterization studies of watermelon may provide valuable information for breeding and research programs. The objectives of this study were to determined of morphological, phytochemical, genetic diversity and population structure among the watermelons. Morphological and phytochemical variations including sugar contents were determined in 96 watermelon genotypes grown in the field. The average number of fruits per plant was determined as 2.52 ± 0.06, and the average yield was determined as 6.2 ± 0.11 kg/m2. The mean total sugar was determined as 6.27 ± 0.12 %, and the lowest value was measured in genotype 234 (1.1%); the highest value was measured in genotype number 184 (8.66%). A total of 62 SSR (Simple Sequence Repeat) primers were used in the molecular characterization study. The similarity coefficients among the 96 genotypes varied between 0.23 and 0.99. This study indicates that there is a wide morphological and sugar parameters variation among watermelon genotypes but narrow molecular genetic diversity. It also provides useful information for watermelon breeding studies.

Keywords: watermelon; characterization; genetic; SSR; sugar analysis

Received: January 10, 2023; Revised: December 6, 2023; Accepted: December 12, 2023; Prepublished online: September 11, 2024; Published: September 29, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Coşkun ÖF, Gülşen O. Molecular, morphological and phytochemical characterization of some watermelon (Citrullus lanatus L.) genotypes. Hort. Sci. (Prague). 2024;51(3):189-201. doi: 10.17221/5/2023-HORTSCI.
Download citation

References

  1. Aslam A., Zhao S., Azam M., Lu X., He N., Li B., Dou J., Zhu H., Liu W. (2020): Comparative analysis of primary metabolites and transcriptome changes between ungrafted and pumpkin-grafted watermelon during fruit development. Peer J, 8, e8259. Go to original source... Go to PubMed...
  2. Chareoansiri R., Kongkachuichai R. (2009): Sugar profiles and soluble and insoluble dietary fiber contents of fruits in Thailand markets. International Journal of Food Sciences and Nutrition, 60: 126-139. Go to original source... Go to PubMed...
  3. Chomicki G., Renner S.S. (2015): Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. The New Phytologist, 205: 526-532. Go to original source... Go to PubMed...
  4. Collins J.K., Wu G., Perkins V.P., Spears K., Claypool P.L., Baker R.A., Clevidence B.A. (2007): Watermelon consumption increases plasma arginine concentrations in adults. Nutrition, 23: 261-266. Go to original source... Go to PubMed...
  5. Danin-Poleg Y., Reis N., Tzuri G., Katzir N. (2001): Development and characterization of microsatellite markers in Cucumis. Theoretical and Applied Genetics, 102: 61-72. Go to original source...
  6. Gama R.D.S., Santos C.A.F., Dias R.D. (2013): Genetic variability of watermelon accessions based on microsatellite markers. Genetics and Molecular Research, 12: 747-754. Go to original source... Go to PubMed...
  7. Dice L.R. (1945): Measures of the amount of ecologic association between species. Ecology, 26, 297-302. Go to original source...
  8. Du H.S., Yang J.J., Chen B., Zhang X.F., Zhang J., Yang K., Geng S.S., Wen C.L. (2019): Target sequencing reveals genetic diversity, population structure, core-SNP markers, and fruit shape-associated loci in pepper varieties. BMC Plant Biology, 19: 578. Go to original source... Go to PubMed...
  9. Evanno G., Regnaut S., Goudet J. (2005): Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611-2620. Go to original source... Go to PubMed...
  10. Falush D., Stephens M., Pritchard J.K. (2003): Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164: 1567-1587. Go to original source... Go to PubMed...
  11. FAOSTAT (2021): The statistical database (FAOSTAT). FAO, Rome, Italy.
  12. Fish W.W., Bruton B.D., Russo V.M. (2009): Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production. Biotechnology for Biofuels, 2: 18. Go to original source... Go to PubMed...
  13. Garcia-Lozano M., Dutta S.K., Natarajan P., Tomason Y.R., Lopez C., Katam R., Levi A., Nimmakayala P., Reddy U.K. (2020): Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids. Plant Molecural Biology, 102: 213-223. Go to original source...
  14. Gichimu B.M., Owuor B.O., Mwai G.N., Dida M.M. (2009): Morphological characterization of some wild and cultivated watermelon (Citrullus sp.) accessions in Kenya. Journal of Agricultural and Biological Science, 4: 10-18.
  15. Gusmini G., Schultheis J.R., Wehner T.C. (2004): Rind thickness of watermelon cultivars for use in pickle production. Horticultural Technology, 14: 540-545. Go to original source...
  16. Hajiali A., Zahedi B., Darvish R., Abbasi J.K. (2016): Investigation on morphological and physiological diversityof Iranian watermelon (Citrullus lanatus Thunb.) accessions. Journal of Horticultural Science, 30: 280-292.
  17. Hashizume T., Shimamoto I., Hirai M. (2003): Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (Thumb.) Matsum & Nakai] using RAPD, RFLP and ISSR markers. Theoretical and Applied Genetics, 106: 779-785. Go to original source... Go to PubMed...
  18. Hong S.P., Lim J.Y., Jeong E.J., Shin D.H. (2008): Physicochemical properties of watermelon according to cultivars. Korean Journal of Food Preservation, 15: 706-710.
  19. Hwang J.H., Ahn S.G., Oh J.Y., Choi Y.W., Kang J.S., Park Y.H. (2011a): Functional characterization of watermelon (Citrullus lanatus L.) EST-SSR by gel electrophoresis and high resolution melting analysis. Scientia Horticulturae, 130: 715-724. Go to original source...
  20. Hwang J., Kang J., Son B., Kim K., Park Y. (2011b): Genetic diversity in watermelon cultivars and related species based on AFLPs and EST-SSRs. Notulae Botanicae Horti Agrobotanici, 39: 285-292. Go to original source...
  21. Jaskani M.J., Kwon S.W., Kim D.H. (2005): Comparative study on vegetative, reproductive and qualitative traits of seven diploid and tetraploid watermelon lines. Euphytica, 145: 259-268. Go to original source...
  22. Joobeur T., Gusmini G., Zhang X., Levi A., Xu Y., Wehner T.C., Oliver M., Dean R.A. (2006): Construction of a watermelon BAC library and identification of SSRs anchored to melon or Arabidopsis genomes. Theoretical and Applied Genetics, 112: 1553-1562. Go to original source...
  23. Karaman K., Dalda-Sekerci A., Yetisir H., Gulsen O., Coskun O.F. (2018): Molecular, morphological and biochemical characterization of some Turkish bitter melon (Momordica charantia L.) genotypes. Industrial Crops and Products, 123: 93-99. Go to original source...
  24. Katzir N., Danin-Poleg Y., Tzuri G., Karchi Z., Lavi U., Cregan P.B. (1996): Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theoretical and Applied Genetics, 93: 1282-1290. Go to original source... Go to PubMed...
  25. Khairullah I., Saleh M., Mawardi (2021): The characteristics of local rice varieties of tidal swampland in South Kalimantan. IOP Conference Series: Earth and Environmental Science, 762: 012009. Go to original source...
  26. Kirac H., Dalda-Sekerci A., Coskun O.F., Gulsen O. (2022): Morphological and molecular characterization of garlic (Allium sativum L.) genotypes sampled from Turkey. Genetic Resources and Crop Evolution: 1-9. Go to original source...
  27. Kim H., Yeo S.S., Han D.Y., Park Y.H. (2015): Interspecific transferability of watermelon EST-SSRs assessed by genetic relationship analysis of Cucurbitaceous crops. Korean Journal of Horticultural Science and Technology, 33: 93-105. Go to original source...
  28. Kwon Y.S., Oh Y.H., Yi S.I., Kim H.Y., An J.M., Yang S.Y., Ok S.H., Shin J.S. (2010): Informative SSR markers for commercial variety discrimination in watermelon (Citrullus lanatus). Genes & Genomics, 32: 115-122. Go to original source...
  29. Kwon Y.S., Park E.K., Lee W.S., Yi S.I., Bae K.M., An J.S., Kim H.Y. (2007): Genetic assessment of watermelon (Citrullus lanatus) varieties using SSR markers developed from cucurbit species. Korean Journal of Genetics, 29: 137-146.
  30. Lee S.J., Shin J.S., Park K.W., Hong Y.P. (1996): Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon (Citrullus lanatus (Thunb.) Mansf.) germplasm. Theoretical and Applied Genetics, 92: 719-725. Go to original source... Go to PubMed...
  31. Levi A., Thomas C.E., Keinath A.P., Wehner T.C. (2001): Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genetic Resources and Crop Evolution, 48: 559-566. Go to original source...
  32. Levi A., Wechter P., Davis A. (2009): EST-PCR markers representing watermelon fruit genes are polymorphic among watermelon heirloom cultivars sharing a narrow genetic base. Plant Genetic Resources, 7: 16-32. Go to original source...
  33. Liu J., Guo S., He H., Zhang H., Gong G., Ren Y., Xu, Y. (2013): Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Acta Physiologiae Plantarum, 35: 3213-3222. Go to original source...
  34. Ma C., Sun Z., Chen C., Zhang L., Zhu S. (2014): Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chemistry, 145: 784-788. Go to original source... Go to PubMed...
  35. Maggs-Kölling G.L., Madsen S., Christiansen J.L. (2000): A phenetic analysis of morphological variation in Citrullus lanatus in Namibia. Genetic Resources and Crop Evolution, 47: 385-393. Go to original source...
  36. Mashilo J., Shimelis H., Odindoa A.O., Amelework B. (2017a): Genetic diversity and differentiation in citron watermelon [Citrullus lanatus var. citroides] landraces assessed by simple sequence repeat markers. Scientia Horticulturae, 214: 99-106. Go to original source...
  37. Mashilo J., Shimelis H., Odindo A., Amelework B. (2017b): Assessment of the genetic diversity of dessert watermelon (Citrullus lanatus var. lanatus) landrace collections of South Africa using SSR markers. Australian Journal of Crop Science, 11: 1392-1398. Go to original source...
  38. Mujaju C., Sehic J., Nybom H. (2013): Assessment of EST-SSR markers for evaluating genetic diversity in watermelon accessions from Zimbabwe. American Journal of Plant Sciences, 4: 1448-1456. Go to original source...
  39. Mujaju C., Sehic J., Werlemark G., Garkava-Gustavsson L., Faith M., Nybom H. (2010): Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas, 147: 142-153. Go to original source... Go to PubMed...
  40. Mujaju C., Zborowska A., Werlemark G., Garkava-Gustavssson L., Andersen S.B., Nybom H. (2011): Genetic diversity among and within watermelon (Citrullus lanatus) landraces in southern Africa. The Journal of Horticultural Science and Biotechnology, 86: 353-358. Go to original source...
  41. Nimmakayala P., Tomason Y.R., Jeong J., Ponniah S.K., Karunathilake A., Levi A., Perumal R., Reddy U.K. (2009): Genetic reticulation and interrelationships among Citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles. Plant Genetic Resources, 8: 16-25. Go to original source...
  42. Pritchard J.K., Stephens M., Donnelly P. (2000): Inference of population Structure using multilocus genotype data. Genetics, 155: 945-959. Go to original source... Go to PubMed...
  43. Rohlf J.F. (2000): NTSYS-pc: Numerical taxonomy and multivariate analysis system. Exeter Software, Setauket, New York.
  44. Schaffer A.A., Paris H.S. (2016): Melons, squashes, and gourds. Amsterdam, Netherlands: Elsevier: 1-9. Go to original source...
  45. Sheng Y., Luan F., Zhang F., Davis A.R. (2012): Genetic diversity within Chinese watermelon ecotypes compared with germplasm from other countries. Journal of the American Society for Horticultural Science, 137: 144-151. Go to original source...
  46. Solmaz I., Sari N., Aka-Kacar Y., Yalcin-Mendi N. Y. (2010): The genetic characterization of Turkish watermelon (Citrullus lanatus) accessions using RAPD markers. Genetic Resources and Crop Evolution, 57: 763-771. Go to original source...
  47. Verma M., Arya L. (2008): Development of EST-SSRs in watermelon (Citrullus lanatus var. lanatus) and their transferability to Cucumis spp. Journal of Horticultural Science & Biotechnology, 83: 732-736. Go to original source...
  48. Walters S.A. (2009): Influence of plant density and cultivar on mini triploid watermelon yield and fruit quality. HortTechnology, 19: 553-557. Go to original source...
  49. Wang P., Li Q., Hu J., Su Y. (2015): Comparative analysis of genetic diversity among Chinese watermelon germplasms using SSR and SRAP markers, and implications for future genetic improvement. Turkish Journal of Agriculture and Forestry, 39: 322-331. Go to original source...
  50. Watcharawongpaibon N., Chunwongse J. (2008): Development and characterization of microsatellite markers from an enriched genomic library of cucumber (Cucumis sativus). Plant Breeding, 127: 74-81. Go to original source...
  51. Xu Y., Guo J., Zhang H., Gong G., Che K. P. Wang B. (2004): Analysis of genetic relationships of watermelon [Citrullus lanatus (Thunb.) mansfeld] germplasm using RAPD and AFLP. Acta Horticulturae (ISHS), 637: 271-278. Go to original source...
  52. Yang J.J., Zhang J., Han R.X., Zhang F., Mao A.J., Luo J., Dong B.B., Liu H., Tang H., Zhang J.N., Wen C.L. (2019): Target SSR-Seq: a novel SSR genotyping technology associate with perfect SSRs in genetic analysis of cucumber varieties. Front in Plant Science, 10: 531. Go to original source... Go to PubMed...
  53. Yativ M., Harary I., Wolf S. (2010): Sucrose accumulation in watermelon fruits: Genetic variation and biochemical analyses. Journal of Plant Physiology, 167: 589-596. Go to original source... Go to PubMed...
  54. Yau E.W., Rosnah S., Noraziah M., Chin N.L., Osman H. (2010): Physico-chemical compositions of the red seedless watermelons (Citrullus lanatus). International Food Research Journal, 17: 327-334.
  55. Yoo K.S., Bang H., Lee E. J., Crosby K., Patil B.S. (2012): Variation of carotenoid, sugar, and ascorbic acid concentrations in watermelon genotypes and genetic analysis. Horticulture, Environment, and Biotechnology, 53: 552-560. Go to original source...
  56. Zhang H., Fan J., Guo S., Ren Y., Gong G., Zhang J. (2016): Genetic diversity, population structure, and formation of a core collection of Citrullus accessions. HortScience, 51: 23-29. Go to original source...
  57. Zhang J., Yang J.J., Zhang L.K., Luo J., Zhao H., Zhang J.N., Wen C.L. (2020): A new SNP genotyping technology target SNP-seq and its application in genetic analysis of cucumber varieties. Sci Rep, 10: 5623. Go to original source... Go to PubMed...
  58. Zhao X.H., Zhang J.C., Zhang Z.Y., Wang Y.R., Xie W.G. (2017): Hybrid identification and genetic variation of Elymus sibiricus hybrid populations using EST-SSR markers. Hereditas, 154: 15. Go to original source... Go to PubMed...
  59. Zhu Q., Gao P., Liu S., Zhu Z., Amanullah S., Davis A.R., Luan F. (2017): Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. BMC Genomics, 18: 3. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.