Hort. Sci. (Prague), 2024, 51(2):127-140 | DOI: 10.17221/173/2022-HORTSCI

Changes in growth and leaf hyperspectral reflectance of zoysiagrass (Zoysia japonica Steud.) under various soil compaction intensitiesOriginal Paper

Jae Eun Choi1,*, Ki Eun Song1,*, Sun Hee Hong2, Petr Konvalina3, Jong Il Chung1, Min Chul Kim1, Sangin Shim1,4
1 Department of Agronomy, Gyeongsang National University, Jinju, Republic of Korea
2 Department of Plant Life Science, Hankyong National University, Ansung, Republic of Korea 
3 Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czech Republic
4 Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea

This study was conducted to determine the effect of traffic stress by soil compaction on zoysiagrass by analyzing the aerial and underground parts and hyperspectral analysis. Zoysiagrass plants were subjected to a compaction strength gradient from 35 to 80 kgf/cm2 to confirm the compaction resistance and recoverable limit and measure the physiological change during stress. Changes in leaf color, photosynthesis, and hyperspectral reflectance due to continuous weak and strong traffic stress were measured, and vegetation indices were evaluated for the critical traffic stress injury assessment. As a result, the stem of the zoysiagrass was severely damaged up to 70 kgf/cm2 based on soil hardness. The recoverable limit strength of soil compaction was 55 kgf/cm2 under weak response pressure conditions. Collectively, our results show that the damage of weak compaction strength on the zoysiagrass was quickly recovered after the stop of traffic stress, especially since the growth of the underground part was increased by weak traffic stress. However, if the compaction strength above 65 kgf/cm2 lasted for a long time, the growth of the underground part is limited by lowering the energy supply for the recovery occurred, in turn, the recovery occurred slowly after the compaction was stopped. Among the vegetation indices obtained from hyperspectral data, pigment specific simple ratio for chlorophyll a (PSSRa), pigment specific simple ratio for chlorophyll b (PSSRb), and pigment specific simple ratio for carotenoids (PSSRc) were effective in evaluating the damage of traffic stress.

Keywords: traffic stress; turfgrass; soil hardness; recovery; drought stress

Accepted: December 12, 2023; Prepublished online: June 6, 2024; Published: June 27, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Eun Choi J, Eun Song K, Hee Hong S, Konvalina P, Chung JI, Kim MC, Shim S. Changes in growth and leaf hyperspectral reflectance of zoysiagrass (Zoysia japonica Steud.) under various soil compaction intensities. Hort. Sci. (Prague). 2024;51(2):127-140. doi: 10.17221/173/2022-HORTSCI.
Download citation

References

  1. Alameda D., Anten N.P., Villar R. (2012): Soil compaction effects on growth and root traits of tobacco depend on light, water regime and mechanical stress. Soil and Tillage Research, 120: 121-129. Go to original source...
  2. Arvidsson J., Håkansson I. (2014): Response of different crops to soil compaction - Short-term effects in Swedish field experiments. Soil and Tillage Research, 138: 56-63. Go to original source...
  3. Batey T. (2009): Soil compaction and soil management-a review. Soil Use and Management, 25: 335-345. Go to original source...
  4. Calleja-Cabrera J., Boter M., Oñate-Sánchez L., Pernas, M. (2020): Root growth adaptation to climate change in crops. Frontiers in Plant Science, 11: 544. Go to original source... Go to PubMed...
  5. Canaway P., Baker S. (1993): Soil and turf properties governing playing quality. International Turfgrass Society Research Journal, 7: 192-200.
  6. Correa J., Postma J.A., Watt M., Wojciechowski T. (2019): Soil compaction and the architectural plasticity of root systems. Journal of Experimental Botany, 70: 6019-6034. Go to original source... Go to PubMed...
  7. ElMasry G., Sun D.W. (2010): Principles of hyperspectral imaging technology. In Hyperspectral imaging for food quality analysis and control, 3-43. Go to original source...
  8. Gamon J., Serrano L., Surfus J. (1997): The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 112: 492-501. Go to original source... Go to PubMed...
  9. Harivandi M.A. (2002): Turfgrass traffic and compaction: Problems and solutions: UCANR Publications. Go to original source...
  10. He L., Song X., Feng W., Guo B.B., Zhang Y.S., Wang Y.H., Wang CY., Guo T.C. (2016): Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sensing of Environment, 174: 122-133. Go to original source...
  11. Iijima M., Kato J., Taniguchi A. (2007): Combined soil physical stress of soil drying, anaerobiosis and mechanical impedance to seedling root growth of four crop species. Plant Production Science, 10: 451-459. Go to original source...
  12. Khan M.J., Khan H. S., Yousaf A., Khurshid K., Abbas A. (2018): Modern trends in hyperspectral image analysis: A review. Ieee Access, 6: 14118-14129. Go to original source...
  13. Knievel D.P. (1973): Procedure for estimating ratio of live to dead root dry matter in root core samples. Crop Science, 13: 124-126. Go to original source...
  14. Kohlmeier G., Eggens J. (1983): The influence of wear and nitrogen on creeping bentgrass growth. Canadian Journal of Plant Science, 63: 189-193. Go to original source...
  15. Lipiec J., Horn R., Pietrusiewicz J., Siczek A. (2012): Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil and Tillage Research, 121: 74-81. Go to original source...
  16. Lipiec J., Medvedev V., Birkas M., Dumitru E., Lyndina T., Rousseva S., Fulajtar E. (2003): Effect of soil compaction on root growth and crop yield in Central and Eastern Europe. International Agrophysics, 17: 61-69.
  17. Lipiec J., Tarkiewicz S., Kossowski J. (1991): Soil physical properties and growth of spring barley as related to the degree of compactness of two soils. Soil and Tillage Research, 19: 307-317. Go to original source...
  18. Loch D.S., Ebina M., Choi J.S., Han L. (2017): Ecological Implications of Zoysia species, distribution, and adaptation for management and use of zoysiagrasses. International Turfgrass Society Research Journal, 13: 11-25. Go to original source...
  19. Lowe A., Harrison N., French A.P. (2017): Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods, 13: 1-12. Go to original source... Go to PubMed...
  20. Lulli F., Volterrani M., Grossi N., Armeni R., Stefanini S., Guglielminetti L. (2012): Physiological and morphological factors influencing wear resistance and recovery in C3 and C4 turfgrass species. Functional Plant Biology, 39: 214-221. Go to original source... Go to PubMed...
  21. Mahlein A.K., Rumpf T., Welke P., Dehne H.W., Plümer L., Steiner U., Oerke E.C. (2013): Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128: 21-30. Go to original source...
  22. Mangiafico S.S., Guillard K. (2005): Turfgrass reflectance measurements, chlorophyll, and soil nitrate desorbed from anion exchange membranes. Crop Science, 45: 259-265. Go to original source...
  23. McCurdy J.D., Small Z.D., Tseng T.M., Brosnan J. T., Reasor E.H. (2022): Effects of soil compaction and moisture on the growth of Juncus tenuis. International Turfgrass Society Research Journal, 14: 776-782. Go to original source...
  24. Moghimi A., Yang C., Miller M.E., Kianian S.F., Marchetto P.M. (2018): A novel approach to assess salt stress tolerance in wheat using hyperspectral imaging. Frontiers in Plant Science, 9: 1182. Go to original source... Go to PubMed...
  25. Mohamadi M.H.S., Etemadi N., Nikbakht A., Pessarakli M. (2017): Physiological responses of two cool-season grass species to Trinexapac-ethyl under traffic stress. HortScience, 52: 99-109. Go to original source...
  26. Nawaz M.F., Bourrie G., Trolard F. (2013): Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33: 291-309. Go to original source...
  27. Pandey P., Ge Y., Stoerger V., Schnable J.C. (2017): High throughput in vivo analysis of plant leaf chemical properties using hyperspectral imaging. Frontiers in Plant Science, 8: 1348. Go to original source... Go to PubMed...
  28. Patton A.J. (2009): Selecting zoysiagrass cultivars: Turfgrass quality, growth, pest and environmental stress tolerance. Applied Turfgrass Science, 6: 1-18. Go to original source...
  29. Patton A.J., Schwartz B.M., Kenworthy K.E. (2017): Zoysiagrass (Zoysia spp.) history, utilization, and improvement in the United States: A review. Crop Science, 57(S1), S37-S72. Go to original source...
  30. Peñuelas J., Filella I., Biel C., Serrano L., Save R. (1993): The reflectance at the 950-970 nm region as an indicator of plant water status. International Journal of Remote Sensing, 14: 1887-1905. Go to original source...
  31. Römer C., Wahabzada M., Ballvora A., Pinto F., Rossini M., Panigada C., Behmann J. On J.L., Thurau C., Bauckhage C., Kersting K., Rascher U., Plümer L. (2012): Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis. Functional Plant Biology, 39: 878-890. Go to original source... Go to PubMed...
  32. Richardson, M.D., Karcher, D.E., Purcell, L.C. (2001): Quantifying turfgrass cover using digital image analysis. Crop Science, 41: 1884-1888. Go to original source...
  33. Shearman R., Beard J. (1975): Turfgrass wear tolerance mechanisms: II. Effects of cell wall constituents on turfgrass wear tolerance. Agronomy Journal, 67: 211-215. Go to original source...
  34. Sims D.A., Gamon J.A. (2002): Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81: 337-354. Go to original source...
  35. Suárez L., Zarco-Tejada P.J., Sepulcre-Cantó G., Pérez-Priego O., Miller, J. Jiménez-Muñoz J., Sobrino J. (2008): Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sensing of Environment, 112: 560-575. Go to original source...
  36. Unger P.W., Kaspar T.C. (1994): Soil compaction and root growth: a review. Agronomy Journal, 86: 759-766. Go to original source...
  37. Washburn B.E., Seamans T.W. (2012): Foraging preferences of Canada geese among turfgrasses: implications for reducing human-goose conflicts. The Journal of Wildlife Management, 76: 600-607. Go to original source...
  38. Wolkowski R. (1990): Relationship between wheel-traffic-induced soil compaction, nutrient availability, and crop growth: A review. Journal of Production Agriculture, 3: 460-469. Go to original source...
  39. Xiong X., Bell G.E., Solie J.B., Smith M.W., Martin, B. (2007): Bermudagrass seasonal responses to nitrogen fertilization and irrigation detected using optical sensing. Crop Science, 47: 1603-1610. Go to original source...
  40. Xue J., Su B. (2017): Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017: 1-17. Go to original source...
  41. Youngner V.B. (1961): Accelerated wear tests on turfgrasses. Agronomy Journal, 53: 217-218. Go to original source...
  42. Zhang W., Chen G., Wu H., Xie C., Wang Z., Song X., Wang P., Ruan X., Ding L., Zhang Y., Liu J. (2020): Evaluation of lawn color and chlorophyll concentration using hyperspectral index. IOP Conference Series: Earth and Environmental Science, 615, p. 012127. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.