Hort. Sci. (Prague), 2024, 51(2):85-97 | DOI: 10.17221/18/2023-HORTSCI
Comparison of the blossom and shoot susceptibility of European and Asian pear cultivars to Pseudomonas syringae pv. syringaeOriginal Paper
- 1 Bacteriology Department, Crop Research Institute, Praque, Czech Republic
The susceptibility of 14 pear cultivars to the bacterium Pseudomonas syringae pv. syringae, the causal agent of bacterial blast, was evaluated using three different methods of in vivo inoculation detached shoots inoculation in a growth chamber, and terminal shoot and blossom inoculation of potted trees in a net house in the period 2020–2022. The 20-week assessment of infection symptoms in the net house showed different dynamics of disease development depending on the inoculation method, the weather during the growing season and the susceptibility of the pear cultivars. Most of the cultivars were during the study low susceptible to pathogen and were classified in blossom, terminal as well as detached shoot susceptibility class 2. The European cultivar Kiefer was the least susceptible (susceptibility class 1) to blossom infection, the Asian cultivars Chojuro and Ya Li to terminal shoot infection, and Ya Li to detached shoot infection. The European cultivar William’s was the most susceptible to all types of infection, being classified in class 3, moderately susceptible cultivars to infection of terminal shoots, and class 4, highly susceptible cultivars to infection of blossoms and detached shoots. The assessment of susceptibility of pear cultivars to Pseudomonas syringae pv. syringae in the net house approximated conditions as close as possible to the condition in orchards and should thus be consistent in plantings with similar environmental and weather conditions.
Keywords: bacterial blast; artificial inoculation; growth chamber; net house
Received: February 9, 2023; Revised: October 13, 2023; Accepted: November 3, 2023; Published: June 27, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abdullah A., Malik M.T., Ali S., Habib A., Zeshan M.A., Sahi S.T., Ijaz Z. (2021): Existence of Pseudomonas syringae pv. syringae in mango grooves of southern Punjab Pakistan reveals an emerging threat of apical necrosis due to climate change. Fresenius Environmental Bulletin, 30: 6679-6690.
- Arora S., Murmu G., Mukherjee K., Saha S., Maity D. (2022): A comprehensive overview of nanotechnology in sustainable agriculture. Journal of Biotechnology, 355: 21-41. Available at https://doi.org/10.1016/j.jbiotec.2022.06.007
Go to original source...
Go to PubMed...
- Bell R.L. (2019): Genetics, Genomics, and Breeding for Fire Blight Resistance in Pear. In: Korban, S. (eds) The Pear Genome. Compendium of Plant Genomes. Cham, Springer: 243-264. Available at https://doi.org/10.1007/978-3-030-11048-2_13
Go to original source...
- Bokszczanin K.L., Przybyla A.A., Schollenberger M., Gozdowski D., Madry W., Odziemkowski S. (2012): Inheritance of fire blight resistance in Asian Pyrus species. Open Journal of Genetics, 2: 109-120. Available at http://dx.doi.org/10.4236/ojgen.2012.22016
Go to original source...
- Bultreys, A., Kaluzna, M. (2010): Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the Pathovars syringae and Morsprunorum race 1 and race 2. Journal of Plant Pathology: S21-S33. Available at http://www.jstor.org/stable/41998753
- Chitu E., Paltineanu C. (2020): Timing of phenological stages for apple and pear trees under growth change in a temperate-continental growth. International Journal of Biometeorology, 64: 1263-1271. Available at https://doi.org/10.1007/s00484-020-01903-2
Go to original source...
Go to PubMed...
- Choi O., Kang B., Lee Y., Kim S., Oh J., Kim H., Kim J. (2020): Bacterial shoot blight caused by Pseudomonas cerasi, a new pathogen of pear tree. Australasian Plant Disease Notes 15: 24. Available at https://doi.org/10.1007/s13314-020-00393-w
Go to original source...
- Cui Z., Huntley R.B., Zeng Q., Steven B. (2021): Temporal and spatial dynamics in the apple flower microbiome in the presence of the phytopathogen Erwinia amylovora. ISME Journal, 15: 318-329. Available at https://doi.org/10.1038/s41396-020-00784-y
Go to original source...
Go to PubMed...
- Deckers T., Schoofs H. (2001): Bacterial problems in Belgian pear growing. The compact fruit tree, 34: 121-124.
- Deckers T., Schoofs H., Creemers P., Latorse M.P., Rosati D., De Maeyer L. (2008): Dead flower buds on 'Conference' pear trees: proposal of a solution. Acta Horticulturae (ISHS), 800: 847-855. Available at https://doi.org/10.17660/ActaHortic.2008.800.115
Go to original source...
- Galán J.E., Waksman G. (2018): Protein-injection machines in bacteria. Cell, 172: 1306-1318. Available at https://doi.org/10.1016/j.cell.2018.01.034
Go to original source...
Go to PubMed...
- Gašić K., Pavlović Ž., Santander R.D., Meredith C., Aćimović S.G. (2018): First report of Pseudomonas syringae pv. syringae associated with bacterial blossom blast on apple (Malus pumila) in the United States. Plant Disease, 102: 1848-1848. Available at https://doi.org/10.1094/PDIS-01-18-0184-PDN
Go to original source...
- Gilbert V., Planchon V., Legros F., Maraite H., Bultreys A. (2010): Pathogenicity and aggressiveness in populations of Pseudomonas syringae from Belgian fruit orchards. European Journal Plant Pathology 126: 263-277. Available at https://doi.org/10.1007/s10658-009-9538-8
Go to original source...
- Hafez Y.M., Salama A., Kotb H., Moussa Z., Elsaed N., El-Kady E.M., Hassan F.A. (2021): The influence of nano-copper and safety compounds on vegetative growth, yield and fruit quality of "Le Conte" pear trees under infection with fire blight. Fresenius Environmental Bulletin, 30: 6237-6247.
- Hall S.J., Dry I.B., Gopurenko D., Whitelaw-Weckert M.A. (2019): Pseudomonas syringae pv. syringae from cool growth Australian grapevine vineyards: new phylogroup PG 02f associated with bacterial inflorescence rot. Plant Pathology, 68: 12-322. Available at https://doi.org/10.1111/ppa.12936
Go to original source...
- Hirano S.S., Upper C.D. (2000): Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiology and Molecular Biology Reviews, 64: 624-653. Available at https://doi.org/10.1128/MMBR.64.3.624-653.2000
Go to original source...
Go to PubMed...
- Kałużna M., Willems A., Pothier J.F., Ruinelli M., Sobiczewski P., Puławska J. (2016): Pseudomonas cerasi sp. nov (non Griffin, 1911) isolated from diseased tissue of cherry. Systematic and Applied Microbiology, 39: 370-377. Available at https://doi.org/10.1016/j.syapm.2016.05.005
Go to original source...
Go to PubMed...
- Kennelly M.M.; Cazorla F.M., de Vicente A., Ramos C., Sundin G.W. (2007): Pseudomonas syringae diseases of fruit trees: progress toward understanding and control. Plant Disease, 91: 4-17. Available at https://doi.org/10.1094/PD-91-0004
Go to original source...
Go to PubMed...
- Keswani C., Singh H.B., García-Estrada C., Caradus J., He Y.W., Mezaache-Aichour S., Glare T.R., Borriss R., Sansinenea E. (2020): Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Applied Microbiology and Biotechnology, 104: 1013-1034. Available at https://doi.org/10.1007/s00253-019-10300-8
Go to original source...
Go to PubMed...
- King E.O., Ward M.K., Raney D.E. (1954): Two simple media for the demonstration of pyocyanin and fluorescein. Journal of Laboratory and Clinical Medicine, 44: 301-307. Available at https://doi.org/ 10.5555/uri:pii:002221435490222X
Go to original source...
- Kostick S.A., Norelli J.L., Evans K.M. (2019): Novel metrics to classify fire blight resistance of 94 apple cultivars. Plant Pathology, 68: 985-996. Available at https://doi.org/10.1111/ppa.13012
Go to original source...
- Latorre B.A., Rioja M.E, Lillo C. (2002): The effect of temperature on infection and a warning system for pear blossom blast caused by Pseudomonas syringae pv. syringae. Crop Protection, 21: 33-39. Available at https://doi.org/10.1016/S0261-2194(01)00061-8.
Go to original source...
- Le Lezec M., Lecomte P., Laurens F., Michelesi J.C. (1997): Sensibilite varietale au feu bacterien. L'arboriculture Fruitiere, 503: 57-62.
- Martínez-Nicolás J., Legua P., Melgarejo P., Martínez R., Hernández F. (2016): Phenological growth stages of nashi tree (Pyrus pyrifolia): codification and description according to the BBCH scale. Annals of Applied Biology, 168: 255-263. Available at https://doi.org/10.1111/aab.12261
Go to original source...
- Macho A.P., Zipfel C. (2015): Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Current Opinion in Microbiology, 23: 14-22. Available at https://doi.org/10.1016/j.mib.2014.10.009
Go to original source...
Go to PubMed...
- Montesinos E., Vilardell P. (1988): On the role of Pseudomonas syringae pv. syringae in blast of pear trees in Catalunya, Spain. In V International Symposium on Pear Growing, 256: 143-152. Available at https://doi.org/10.17660/ActaHortic.1989.256.17
Go to original source...
- Moragrega C., Llorente I., Manceau C., Montesinos E. (2003): Susceptibility of European pear cultivars to Pseudomonas syringae pv. syringae using immature fruit and detached leaf assays. European Journal of Plant Pathology, 109: 319-326. Available at https://doi.org/10.1023/A:1023574219069
Go to original source...
- Oksel C., Avin F.A., Mirik M., Baysal-Gurel F. (2022): Identification and genetic characterization of Pseudomonas syringae pv. syringae from sweet cherry in Turkey. Plant Disease, 106: 1253-1261. Available at https://doi.org/10.1094/PDIS-10-21-2241-RE
Go to original source...
Go to PubMed...
- Pánková I., Krejzar V., Buchtová S., Krejzarová R. (2023): Comparison of the shoot and blossom susceptibility of European and Asian pear cultivars to fire blight across different conditions. Plant Protectection Science, 59: 48-58. Available at https://doi.org/10.17221/55/2022-PPS
Go to original source...
- Przybyla A.A., Bokszczanin K.L., Schollenberger M., Gozdowski D., Madry W., Odziemkowski S. (2012): Fire blight resistance of pear genotypes from different European countries. Trees, 26: 191-197. Available at https://doi.org/10.1007/s00468-011-0646-7
Go to original source...
Go to PubMed...
- Parisi L., Morgaint B., Blanco-Garcia J., Guilbaud C., Chandeysson C., Bourgeay J.F., Moronvalle A., Brun L., Brachet M.L., Morris C.E. (2019): Bacteria from fylogroups of the Pseudomonas syringae complex can cause bacterial canker of apricot. Plant Pathology, 68: 1249-1258. Available at https://doi.org/10.1111/ppa.13051
Go to original source...
- Pieterse C.M.J., Zamioudis C., Berensen R.L., Weller D.M., Van Wees S.C.M. Bakker P.A.H.M. (2014): Induced systemic resistance by beneficial microbes. Annual Review in Phytopathology, 52: 347-375. Available at https://doi.org/10.1146/annurev-phyto-082712-102340
Go to original source...
Go to PubMed...
- Pscheidt J.W., Ocamb C.M. (2022): Copper-based Bactericides and Fungicides. Pacific Northwest pest management handbooks. Oregon State University, Corvallis. Available at https://pnwhandbooks.org/node/25411
- Rodrigo J. (2000): Spring frosts in deciduous fruit trees - morphological damage and flower hardiness. Scientia Horticulturae, 85: 155-173. Available at https://doi.org/10.1016/S0304-4238(99)00150-8
Go to original source...
- R Core Team (2021): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/
- Schaeffer R.N., Pfeiffer V.W., Basu S., Brousil M., Strohm C., DuPont S.T., et al. (2021): Orchard management and landscape context mediate the pear floral microbiome. Applied and Environmental Microbiology, 87: e00048-21. Available at https://doi.org/10.1128/AEM.00048-21
Go to original source...
Go to PubMed...
- Scheck H.J., Canfield M.L., Pscheidt J.W., Moore L.W. (1997): Rapid evaluation of pathogenicity in Pseudomonas syringae pv. syringae with a lilac tissue culture bioassay and syringomycin DNA probes. Plant Disease, 81: 905-910. Available at https://doi.org/10.1094/PDIS.1997.81.8.905
Go to original source...
Go to PubMed...
- Scortichini M. (2022): Sustainable management of diseases in horticulture: Conventional and new options. Horticulturae, 8: 517-547. Available at https://doi.org/10.3390/horticulturae8060517
Go to original source...
- Shwartz H., Shtienberg D., Vintal H., Kritzman G. (2003): The interacting effects of temperature, duration of wetness and inoculum size on the infection of pear blossoms by Erwinia amylovora, the causal agent of fire blight. Phytoparasitica, 31: 174-187. Available at https://doi.org/10.1007/BF02980788
Go to original source...
- Sobiczewski P., Peil A., Mikiciński A., Richter K., Lewandowsli M., Żurawicz E., Kellerhals M. (2015): Susceptibility of apple genotypes from European genetic resources to fire blight (Erwinia amylovora). European Journal of Plant Pathology, 141: 51-62. Available at https://doi.org/10.1007/s10658-014-0521-7
Go to original source...
- Spotts R.A. Cervantes L.A. (1995): Factors affecting the severity of bacterial canker of pear caused by Pseudomonas syringae pv. syringae. Plant Pathology, 44: 325-331. Available at https://doi.org/10.1111/j.1365-3059.1995.tb02784.x
Go to original source...
- Sundin G.W., Castiblanco L.F., Yuan X., Zeng Q., Yang C.H. (2016): Bacterial disease management: challenges, experience, innovation, and future prospects: challenges in bacterial molecular plant pathology. Molecular Plant Pathology, 17: 1506-518. Available at https://doi.org/10.1111/mpp.12436
Go to original source...
Go to PubMed...
- Tabira T., Abe A., Honda H., Sato K., Takeda T., Inoue Y., Uematsu H., Hanogami K. (2012): Bacterial black spot of European pear (Pyrus communis L. var. sativa de Candolle) caused by Pseudomonas syringae pv. syringae. Japanese Journal of Phytopathology, 78: 178-182. Available at https://doi.org/10.3186/jjphytopath.78.178
Go to original source...
- Tomczyk A.M., Szyga-Pluta K., Bednorz E. (2020): Occurrence and synoptic background of strong and very strong frost in spring and autumn in Central Europe. International Journal of Biometeorology, 64: 59-70. Available at https://doi.org/10.1007/s00484-019-01793-z
Go to original source...
Go to PubMed...
- Tran N.N., Le T.N.Q., Pho H.Q., Tran T.T., Hessel V. (2022): Nanofertilizers and Nanopesticides for Crop Growth. In: Chen, JT. (eds) Plant and Nanoparticles. Springer, Singapore. Available at https://doi.org/10.1007/978-981-19-2503-0_15
Go to original source...
- Van der Zwet T., Orolaza-Halbrendt N., Zeller W. (2012): The disease cycle of fire blight. Fire Blight: History, Biology and Management. American Phytopathological Society, St. Paul, MN, USA. Available at https://doi.org/10.1094/9780890544839.012
Go to original source...
- Velásquez A.C., Castroverde C.D.M., He S.Y. (2018): Plant-pathogen warfare under changing growth conditions. Current Biology, 28: R619-R634. Available at https://doi.org/10.1016/j.cub.2018.03.054
Go to original source...
Go to PubMed...
- Wenneker M., Janse J.D., De Bruine A., Vink P., Pham K. (2012): Bacterial canker of plum caused by Pseudomonas syringae pathovars, as a serious threat for plum production in the Netherlands. Journal of Plant Pathology, 94 (1sup): 1-11. Available at https://doi.org/10.4454/JPP.V94I1SUP.003
Go to original source...
- Whitesides S.K., Spotts R.A. (1991): Induction of pear blossom blast caused by Pseudomonas syringae pv. syringae. Plant Pathology, 40: 118-127. Available at https://doi.org/10.1111/j.1365-3059.1991.tb02300.x
Go to original source...
- Xin X.F., Kvitko B., He S. (2018): Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology, 16: 316-328. Available at https://doi.org/10.1038/nrmicro.2018.17
Go to original source...
Go to PubMed...
- Yessad-Carreau S., Manceau C., Luisetti J. (1994): Occurrence of specific reactions induced by Pseudomonas syringae pv. syringae on bean pods, lilac and pear plants. Plant Pathology, 43: 528-536. Available at https://doi.org/10.1111/j.1365-3059.1994.tb01587.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.