Hort. Sci. (Prague), 2024, 51(1):29-38 | DOI: 10.17221/110/2022-HORTSCI

UPLC-MS/MS-based widely-targeted metabolic profiling reveals leaf metabolite changes in sweet cherry under rain-shelter cultivationOriginal Paper

Huimin Zhan1,2, Yanhue Jiang1,2, Haozhang Han1,2, Yu Liu1,2, Quan Li1*
1 School of Biology and Materials Engineering, Suqian University, Jiangsu, P. R. China
2 Key Laboratory of Garden Plants and Ornamental Horticulture of Suqian, Suqian University, Jiangsu, P. R. China

Metabolomics analysis based on UPLC-MS/MS was used to investigate the influence of rain shelter (RS) conditions on metabolites of sweet cherry leaves. It was found that there were 134 differential metabolites. These differential metabolites were enriched in 40 metabolic pathways. Studies on the biosynthetic pathways and regulatory mechanisms of metabolites in sweet cherry leaves showed that low-light and drought stresses in RS plants were related to the amino acid biosynthesis metabolic pathway and that of flavone and flavonol biosynthesis. Sweet cherry trees exhibited improved tolerance to drought stress by regulating the increase in the content of metabolites, such as proline in the amino acid metabolic pathway and the content of flavonoids in the phenylpropane metabolic pathway. To cope with low-light stress, sweet cherry leaves can increase their photosynthetic efficiency by regulating the flavonol content in the flavone and flavonol biosynthetic pathway under the catalysis of a series of enzymes.

Keywords: Prunus avium L.; metabolites; pathway; stress; molecular biology

Accepted: July 25, 2023; Prepublished online: March 15, 2024; Published: March 27, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhan H, Jiang Y, Han H, Liu Y, Li Q. UPLC-MS/MS-based widely-targeted metabolic profiling reveals leaf metabolite changes in sweet cherry under rain-shelter cultivation. Hort. Sci. (Prague). 2024;51(1):29-38. doi: 10.17221/110/2022-HORTSCI.
Download citation

References

  1. Acero N., Gradillas A., Beltran M., García A., Mingarro D.M. (2019): Comparison of phenolic compounds profile and antioxidant properties of different sweet cherry (Prunus avium L.) varieties. Food Chemistry, 279: 260-271. Go to original source... Go to PubMed...
  2. Aires A., Dias C., Carvalho R., Saavedra M.J. (2017): Analysis of glycosylated flavonoids extracted from sweet-cherry stems, as antibacterial agents against pathogenic Escherichia coli isolates. Acta Biochimica Polonica, 64: 265-271. Go to original source... Go to PubMed...
  3. Antoniou C., Chatzimichail G., Xenofontos R., Pavlou J.J., Panagiotou E., Christou A., Fotopoulos V. (2017): Melatonin systemically ameliorates drought stress-induced damage in Medicago sativa plants by modulating nitro-oxidative homeostasis and proline metabolism. Journal of Pineal Research, 62: e12401. Go to original source... Go to PubMed...
  4. Anwar S., Wieczorek K., Inselsbacher E. (2018): Analysis of Arabidopsis amino acid metabolism in response to Heterodera schachtii infection. Pakistan Journal of Nematology, 36: 131-150. Go to original source...
  5. Brosnan J.T., Brosnan M.E. (2020): Formate and its role in amino acid metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 23: 23-28. Go to original source... Go to PubMed...
  6. Chockchaisawasdee S., Golding J.B., Vuong Q.V., Papoutsis K., Stathopoulos C.E. (2016): Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends in Food Science and Technology, 55: 72-83. Go to original source...
  7. Correia S., Schouten R., Silva A.P., Gonçalves B. (2017): Factors affecting quality and health promoting compounds during growth and postharvest life of sweet cherry (Prunus avium L.). Frontiers in Plant Science, 8: 2166. Go to original source... Go to PubMed...
  8. Duan S., Wu Y., Fu R., Wang L., Chen Y., Xu W., Wang S. (2019): Comparative metabolic profiling of grape skin tissue along grapevine berry developmental stages reveals systematic influences of root restriction on skin metabolome. International Journal of Molecular Sciences, 20: 534. Go to original source... Go to PubMed...
  9. Eelen G., Dubois C., Cantelmo A.R., Goveia J., Brüning U., DeRan M., Jarugumilli G., van Rijssel J., Saladino G., Comitani F. (2018): Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature, 561: 63-69. Go to original source... Go to PubMed...
  10. Fürtauer L., Weiszmann J., Weckwerth W., Nägele T. (2019): Dynamics of plant metabolism during cold acclimation. International Journal of Molecular Sciences, 20: 5411. Go to original source... Go to PubMed...
  11. Gao Y., Li X.X., Han M.M., Yang X.F., Li Z., Wang J., Pan Q.H. (2016): Rain-shelter cultivation modifies carbon allocation in the polyphenolic and volatile metabolism of Vitis vinifera L. Chardonnay Grapes. PLoS ONE, 11: e0156117. Go to original source... Go to PubMed...
  12. Gharibi S., Tabatabaei B.E.S., Saeidi G., Talebi M., Matkowski A. (2019): The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech. f. Phytochemistry, 162: 90-98. Go to original source... Go to PubMed...
  13. Giménez M.J., Serrano M., Valverde J.M., Martínez-Romero D., Castillo S., Valero D., Guillén F. (2017): Preharvest salicylic acid and acetylsalicylic acid treatments preserve quality and enhance antioxidant systems during postharvest storage of sweet cherry cultivars. Journal of the Science of Food and Agriculture, 97: 1220-1228. Go to original source... Go to PubMed...
  14. Guo H., Guo H., Zhang L., Tang Z., Yu X., Wu J., Zeng F. (2019): Metabolome and transcriptome association analysis reveals dynamic regulation of purine metabolism and flavonoid synthesis in transdifferentiation during somatic embryogenesis in cotton. International Journal of Molecular Sciences, 20: 2070. Go to original source... Go to PubMed...
  15. Hong J., Yang L., Zhang D., Shi J. (2016): Plant metabolomics: an indispensable system biology tool for plant science. International Journal of Molecular Sciences, 17: 767. Go to original source... Go to PubMed...
  16. Jorge T.F., Rodrigues J.A., Caldana C., Schmidt R., van Dongen J.T., Thomas-Oates J, António C. (2016): Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrometry Reviews, 35: 620-649. Go to original source... Go to PubMed...
  17. Li Y., Fang J., Qi X., Lin M., Zhong Y., Sun L., Cui W. (2018): Combined analysis of the fruit metabolome and transcriptome reveals candidate genes involved in flavonoid biosynthesis in Actinidia arguta. International Journal of Molecular Sciences, 19: 1471. Go to original source... Go to PubMed...
  18. Lin W., Li Y., Lu Q., Lu H., Li J. (2020): Combined analysis of the metabolome and transcriptome identified candidate genes involved in phenolic acid biosynthesis in the leaves of Cyclocarya paliurus. International Journal of Molecular Sciences, 21: 1337. Go to original source... Go to PubMed...
  19. Lu F., Zhang N., Yu D., Zhao H., Pang M., Fan Y., Liu S. (2019): An integrated metabolomics and 16S rRNA gene sequencing approach exploring the molecular pathways and potential targets behind the effects of Radix Scrophulariae. RSC Advances, 9: 33354-33367. Go to original source... Go to PubMed...
  20. Martini S., Conte A., Tagliazucchi D. (2017): Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Research International, 97: 15-26. Go to original source... Go to PubMed...
  21. Matsui K., Oshima Y., Mitsuda N., Sakamoto S., Nishiba Y., Walker A.R., Takami H. (2018): Buckwheat R2R3 MYB transcription factor FeMYBF1 regulates flavonol biosynthesis. Plant Science, 274: 466-475. Go to original source... Go to PubMed...
  22. Meng J.F., Ning P.F., Xu T.F., Zhang Z.W. (2013): Effect of rain-shelter cultivation of Vitis vinifera cv. Cabernet gernischet on the phenolic profile of berry skins and the incidence of grape diseases. Molecules, 18: 381-397. Go to original source... Go to PubMed...
  23. Miao L., Zhang Y., Yang X., Jiang G. (2016): Effect of rain shelter and shading on plantlets growth and antioxidant contents in strawberry. Indian Journal of Horticulture, 73: 433-436. Go to original source...
  24. Michailidis M., Karagiannis E., Tanou G., Samiotaki M., Sarrou E., Karamanoli K., Molassiotis A. (2020): Proteomic and metabolic analysis reveals novel sweet cherry fruit development regulatory points influenced by girdling. Plant Physiology and Biochemistry, 149: 233-244. Go to original source... Go to PubMed...
  25. Mirto A., Iannuzzi F., Carillo P., Ciarmiello L.F., Woodrow P., Fuggi A. (2018): Metabolic characterization and antioxidant activity in sweet cherry (Prunus avium L.) Campania accessions: Metabolic characterization of sweet cherry accessions. Food Chemistry, 240: 559-566. Go to original source... Go to PubMed...
  26. Okazaki Y., Saito K. (2012): Recent advances of metabolomics in plant biotechnology. Plant Biotechnology Reports, 6: 1-15. Go to original source... Go to PubMed...
  27. Pavlova N.N., Hui S., Ghergurovich J.M., Fan J., Intlekofer A.M., White R.M., Zhang J. (2018): As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metabolism, 27: 428-438. Go to original source... Go to PubMed...
  28. Per T.S., Khan N.A., Reddy P.S., Masood A., Hasanuzzaman M., Khan M.I.R., Anjum N.A. (2017): Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 115: 126-140. Go to original source... Go to PubMed...
  29. Shoeva O.Y., Mock H.P., Kukoeva T.V., Börner A., Khlestkina E.K. (2016): Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare. PLoS ONE, 11: e0163782. Go to original source... Go to PubMed...
  30. Tian T., Qiao G., Deng B., Wen Z., Hong Y., Wen X. (2019): The effects of rain shelter coverings on the vegetative growth and fruit characteristics of Chinese cherry (Prunus pseudocerasus Lindl.). Scientia Horticulturae, 254: 228-235. Go to original source...
  31. Wang J., Lv J., Liu Z., Liu Y., Song J., Ma Y., Juntawong N. (2019): Integration of transcriptomics and metabolomics for pepper (Capsicum annuum L.) in response to heat stress. International Journal of Molecular Sciences, 20: 5042. Go to original source... Go to PubMed...
  32. Wu Y., Guo J., Zhou Q., Xin Y., Wang G., Xu L.A. (2018): De novo transcriptome analysis revealed genes involved in flavonoid biosynthesis, transport and regulation in Ginkgo biloba. Industrial Crops and Products, 124: 226-235. Go to original source...
  33. Xin W., Zhang L., Zhang W., Gao J., Yi J., Zhen X., Chen L. (2019): An integrated analysis of the rice transcriptome and metabolome reveals root growth regulation mechanisms in response to nitrogen availability. International Journal of Molecular Sciences, 20: 5893. Go to original source... Go to PubMed...
  34. Xiu Y., Jang S., Jones J.A., Zill N.A., Linhardt R.J., Yuan Q., Koffas M.A. (2017): Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures. Biotechnology and Bioengineering, 114: 2235-2244. Go to original source... Go to PubMed...
  35. Zhu G., Xiao H., Guo Q., Zhang Z., Zhao J., Yang D. (2018): Effects of cadmium stress on growth and amino acid metabolism in two compositae plants. Ecotoxicology and Environmental Safety, 158: 300-308. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.