Hort. Sci. (Prague), 2023, 50(4):253-261 | DOI: 10.17221/1/2023-HORTSCI
Colonization of ‘Sampion’ apple tree roots and rhizosphere by mycorrhizal fungi following the application of AquaGel or organic compost enriched with beneficial microorganismsOriginal Paper
- 1 The National Institute of Horticultural Research, Skierniewice, Poland
Apple trees of the cultivar ‘Sampion’ were planted at the Experimental Orchard of National Institute of Horticultural Research in Dąbrowice. In a three-year experiment (2019–2021) the following fertilization combinations were applied: AquaGel (commercial hydrogel), AquaGel combined with a consortium of beneficial bacteria, AquaGel combined with a consortium of beneficial filamentous fungi, organic compost alone, compost combined with a consortium of beneficial bacteria, and compost combined with a consortium of beneficial filamentous fungi. The presence of arbuscular mycorrhizal fungi was assessed both in the rhizosphere soil and in the roots of apple trees. The results of the study indicate the most advantageous effect of compost combined with bacteria or fungi on the degree of root colonization by arbuscular mycorrhizal fungi and the formation of their spores in the soil.
Keywords: fertilization; mycorrhizal frequency; soil; spores; beneficial bacteria; beneficial fungi
Received: January 3, 2023; Revised: June 7, 2023; Accepted: June 20, 2023; Prepublished online: November 29, 2023; Published: December 21, 2023 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Abdel-Wahab A. (2018): Increasing productivity and head quality of lettuce using bio-stimulants. Middle East Journal of Agriculture Research, 7: 1001-1005.
- Aggani S.L. (2013): Development of bio-fertilizers and its future perspective. Scholars Academic Journal of Pharmacy, 2: 327-332.
- Aghhavani Shajari M., Rezvani Moghaddam P., Ghorbani R., Koocheki A. (2018): Increasing saffron (Crocus sativus L.) corm size through the mycorrhizal inoculation, humic acid application and irrigation managements. Journal of Plant Nutrition, 41: 1047-1064.
Go to original source...
- Augé R.M., Toler H.D., Saxton A.M. (2015): Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: A meta-analysis. Mycorrhiza, 25: 13-24.
Go to original source...
Go to PubMed...
- Beneduzi A., Ambrosini A., Passaglia L.M. (2012): Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35: 1044-1051
Go to original source...
Go to PubMed...
- Błaszkowski J. (2008): Metody izolowania, hodowania i identyfikowania arbuskularnych grzybów mikoryzowych z gromady Glomeromycota. In: Mulenko W. (ed.) Mycologiczne badania terenowe. Przewodnik metodyczny. Mułenko, W. (ed.), Wydawnictwo UMCS: 142-163.
- Błaszkowski J. (2003): Arbuscular mycorrhizal fungi (Glomeromycota). Endogone and Complexipes species deposited in the Department of Plant Pathology, University of Agriculture in Szczecin, Poland.
- Bonanomi G., Alioto D., Minutolo M., Marra R., Cesarano G., Vinale F. (2020): Organic amendments modulate soil microbiota and reduce virus disease incidence in the TSWV-tomato pathosystem. Pathogens, 9: 379.
Go to original source...
Go to PubMed...
- De Corato U. (2020): Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Science of Total Environment, 738: 139840.
Go to original source...
Go to PubMed...
- Derkowska E., Sas-Paszt L., Dyki B., Sumorok B. (2015a): Assessment of mycorrhizal frequency in the roots of fruit plants using different dyes. Advances in Microbiology, 5: 54-64.
Go to original source...
- Hashem A., Tabassumc B., Abd_Allahd E.F. (2019): Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26: 1291-1297.
Go to original source...
Go to PubMed...
- Chitarra W., Pagliarani C.H., Maserti B., Lumini E., Siciliano I., Cascone P., Schubert A., Gambino G., Balestrini R., Guerrieri E. (2016): Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology, 171:1009-1023.
Go to original source...
Go to PubMed...
- Hillocks R.J. (2012): Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Protection, 31: 85-93.
Go to original source...
- Jiang S., An, X., Shao Y., Kang Y., Chen T., Mei, X., Dong C., Xu Y., Shen, Q. (2021): Responses of arbuscular mycorrhizal fungi occurrence to organic fertilizer: a meta-analysis of field studies. Plant and Soil, 469: 89-105.
Go to original source...
- Kobus J. (1995): Biologiczne procesy a kształtowanie żyzności gleb, Zeszyty Problemowe Postępu Nauk Rolniczych, 421: 209-219.
- Kumar M.S., Reddy G. C., Phogat M., Korav S. (2018): Role of bio-fertilizers towards sustainable agricultural development: A review. Journal of Pharmacognosy and Phytochemistry, 7: 1915-1921.
- Liu J., Zhang J., Li D., Xu C., Xiang X. (2020): Differential responses of arbuscular mycorrhizal fungal communities to mineral and organic fertilization. MicrobiologyOpen, 9: e00920.
Go to original source...
Go to PubMed...
- Ma Y., Zhang H., Wang D., Guo X., Yang T., Xiang X., Walder F., Chu H. (2021): Differential responses of arbuscular mycorrhizal fungal communities to long-term fertilization in the wheat rhizosphere and root endosphere. Applied and Environmental Microbiology, 87: e00349-21.
Go to original source...
Go to PubMed...
- Mannino G., Nerva L., Gritli T., Novero M., Fiorilli V., Bacem M., Bertea C.M., Lumini E., Chitarra W., Balestrini R. (2020): Effects of different microbial inocula on tomato tolerance to water deficit. Agronomy, 10: 170.
Go to original source...
- Moucheshi A., Heidari B., Assad M.T. (2012): Alleviation of drought stress effects on wheat using arbuscular mycorrhizal symbiosis. International Journal of AgriScience 2: 35-47.
- Mosa W.F.A.E.G., Sas-Paszt L., Abd EL-Megeed N.A. (2014): The role of bio-fertilization in improving fruits productivity-a review. Advances in Microbiology, 4: 1057-1064.
Go to original source...
- Pedranzani H.E., Rodríguez-Rivera M., Gutiérrez M., Porcel R., Hause B., Ruiz-Lozano J.M. (2016): Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza, 26: 141-152.
Go to original source...
Go to PubMed...
- Radhakrishnan R., Hashem A., Abd_Allah E.F. (2017): Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Frontiers in Physiology 8: 667.
Go to original source...
Go to PubMed...
- Ravindran B., Karmegam N., Yuvaraj A., Thangaraj R., Chang S.W., Zhang Z., Awasthi M. K. (2021): Cleaner production of agriculturally valuable benignant materials from industry generated bio-wastes: A review. Bioresource Technology, 320: 124281.
Go to original source...
Go to PubMed...
- Riaz U., Mehdi S.M., Iqbal S., Khalid H. I., Qadir A.A., Anum W., Ahmad M., Murtaza, G. (2020): Bio-fertilizers: eco-friendly approach for plant and soil environment. Bioremediation and Biotechnology, Springer: 189-213.
Go to original source...
- Sas-Paszt L., Malusá E., Sumorok B., Canfora L., Derkowska E., Głuszek S. (2015): The influence of bioproducts on mycorrhizal occurrence and diversity in the rhizosphere of strawberry plants under controlled conditions. Advances in Microbiology, 5: 40.
Go to original source...
- Sawinska Z., Świtek S., Głowicka-Wołoszyn R., Kowalczewski P.Ł. (2020): Agricultural practice in Poland before and after mandatory IPM implementation by the European Union. Sustainability, 12: 1107.
Go to original source...
- Solaiman Z.M., Hongjun Y.A.N.G., Archdeacon D., Tippett O., Michaela T.I.B.I., Whiteley A.S. (2019): Humus-rich compost increases lettuce growth, nutrient uptake, mycorrhizal colonisation, and soil fertility. Pedosphere, 29: 170-179.
Go to original source...
- Suman A., Verma P., Yadav A.N., Srinivasamurthy R., Singh A., Prasanna R. (2016): Development of hydrogel based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.). International Journal of Current Microbiology and Applied Sciences, 5: 890-901.
Go to original source...
- Trouvelot A., Kough J.L., Gianinazzi-Pearson V. (1986): Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methods d'estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V., Gianinazzi S. (eds), Physiological and Genetical Aspects of Mycorrhizae. INRA Paris, 217-221.
- Volpe V., Chitarra W., Cascone P., Volpe M.G., Bartolini P., Moneti G., Pieraccini G., Di Serio C., Maserti B., Guerrieri E., Balestrini R. (2018): The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. Frontiers in Plant Science, 9: 1480.
Go to original source...
Go to PubMed...
- Waqar A., Bano A., Ajmal M. (2022): Effects of PGPR Bioinoculants, hydrogel and biochar on growth and physiology of soybean under drought stress. Communications in Soil Science and Plant Analysis, 53: 826-847.
Go to original source...
- Widnyana K., Sukerta I.M., Wiswasta I.G.N.A., Limantara L.M. (2019): The role of rizobacteria Pseudomonas alcaligenes, Bacillus sp. and mycorrhizal fungi in growth and yield of tomato plants. International Journal of GEOMATE, 61: 174-180.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.