Hort. Sci. (Prague), 2023, 50(3):241-251 | DOI: 10.17221/17/2022-HORTSCI

LbCu/ZnSOD and LbMnSOD involved in drought stress tolerance induced by strigolactones of cut lilyOriginal Paper

Bowen Chiai1, Tian Xiea1, Li Liua1, Junhui Yan1, Zixian Zhao1, Minghua Deng ORCID...2, Jinfen Wena1
1 Faculty of Architecture and Urban Planning, Kunming University of Science and Technology, Kunming, Yunnan China
2 College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan, P. R. China

In this study, LbCu/ZnSOD, LbFeSOD, and LbMnSOD genes were cloned, the role of strigolactones (SLs), a novel plant hormone that is ubiquitous in plants in modulating plant responses to abiotic stress, on the three superoxide dismutases (SODs) under polyethylene glycol PEG-6000 stress were researched in the petals of cut lily flowers. The results indicated that during the development of the lily bud, the expression levels of LbMnSOD gradually increased and those of LbCu/ZnSOD decreased, while the LbFeSOD expression remained at a very low level. When the cut lily flowers were subjected to 10% PEG-6000 stress, the relative water content (RWC) declined, the malondialdehyde (MDA) content and relative electrical conductivity (REC) dramatically increased in the petals. However, when exogenous SLs were employed, the RWC were improved, while the MDA and REC were reduced. Meanwhile, the SLs significantly increased the activities of the total SOD (T-SOD), Cu/ZnSOD and MnSOD, the expression levels of LbCu/ZnSOD and LbMnSOD, especially LbCu/ZnSOD, were markedly up-regulated in the petals. In conclusion, our research indicates that SOD enzymes, especially Cu/ZnSOD and MnSOD, are involved in the drought stress tolerance; the application of strigolactones can enhance the activities of the two SODs, and may increase the expression of LbCu/ZnSOD and LbMnSOD via a positive feedback mechanism in the cut lily petals.

Keywords: lily; superoxide dismutase; drought stress; PEG-6000; strigolactones

Accepted: April 12, 2023; Published: September 29, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Chiai B, Xiea T, Liua L, Yan J, Zhao Z, Deng M, Wena J. LbCu/ZnSOD and LbMnSOD involved in drought stress tolerance induced by strigolactones of cut lily. Hort. Sci. (Prague). 2023;50(3):241-251. doi: 10.17221/17/2022-HORTSCI.
Download citation

References

  1. Abdelgawad H., Zinta G., Badreldin A. H., Selim S., Abuelsoud W. (2019): Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity. Environmental Pollution, 258: 113705. Go to original source... Go to PubMed...
  2. Abreu I.A., Cabelli D.E. (2009): Superoxide dismutases a review of the metal-associated mechanistic variations. BBA-Bioenergetics, 1804: 263-274. Go to original source... Go to PubMed...
  3. Alscher R.G., Erturk N., Heath L.S. (2002): Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, Journal of Experimental Botany, 372: 1331-1341. Go to original source...
  4. Bhoi A., Yadu B., Chandra J., Keshavkant S. (2021): Contribution of strigolactone in plant physiology, hormonal interaction and abiotic stresses. Planta, 254: 28. Go to original source... Go to PubMed...
  5. Borsani O., Díaz P., Agius M.F., Valpuesta V., Monza J. (2001): Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves. Plant Science, 161: 757-763. Go to original source...
  6. Dehury B., Sarma K., Sarmah R., Sahu J., Sahoo S., Sahu M., Sen P., Modi M.K., Sharma G.D., Choudhury M.D., Barooah M. (2013): In silico analyses of superoxide dismutases (SODs) of rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology, 22: 150-156 Go to original source...
  7. Feng X., Lai Z., Lin Y., Lai G.T., Lian C.L. (2015): Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group). BMC Genomics, 16: 823. Go to original source... Go to PubMed...
  8. Filiz E., Tombuloğlu H. (2015): Genome-wide distribution of superoxide dismutase (SOD) gene families in Sorghum bicolor, Turkish Journal of Biology, 39: 49-59. Go to original source...
  9. Hu X.X., Hao C.Y., Cheng Z.M., Zhong Y. (2019): Genome-wide identification, characterization, and expression analysis of the grapevine superoxide dismutase (SOD) family. International Journal of Genomics, 2019: 1-13. Go to original source... Go to PubMed...
  10. Hui Y., Chen L., Li X.Y., Chen Q.M., Yi M.F. (2008): Comparison and optimization of total RNA extraction methods from lily leaves. Journal of China Agricultural University, 13: 41-45.
  11. Jiang Y.D., Khan M.A., Wang Z., Liu J., Zhang C. (2015): Cu/ZnSOD involved in tolerance to dehydration in cut rose (Rosa hybrida). Postharvest Biology & Technology, 100: 187-195. Go to original source...
  12. Karuppanapandian T., Moon J.C., Kim C., Manoharan K., Kim W. (2011): Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5: 709-725.
  13. Kliebenstein D.J., Monde R.A., Last R.L. (1998): Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiology, 118: 637-650. Go to original source... Go to PubMed...
  14. Kramna B., Prerostova S., Vankova R. (2019): Strigolactones in an experimental context. Plant Growth Regulation, 88: 113-128. Go to original source...
  15. Li H.S. (2000): Experimental principles and techniques of plant physiology and biochemistry [M]. Beijing: Higher Education Press.
  16. López-Ráez J.A., Shirasu K., Foo E. (2017): Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends in Plant Science, 22: 527-537. Go to original source... Go to PubMed...
  17. Mascher R., Nagy E., Lippmann B., Hörnlein S., Fischer S., Scheiding W., Neagoe A., Bergmann H. (2005): Improvement of tolerance to paraquat and drought in barley (Hordeum vulgare L.) by exogenous 2-aminoethanol: effects on superoxide dismutase activity and chloroplast ultrastructure. Plant Science, 168: 691-698. Go to original source...
  18. Miller A.F. (2012): Superoxide dismutases: ancient enzymes and new insights, FEBS Letters, 586: 585-595. Go to original source... Go to PubMed...
  19. Reddy A.R., Chaitanya K.V., Jutur P.P., Sumithra K. (2004): Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environmental & Experimental Botany, 52: 33-42. Go to original source...
  20. Rochange S., Goormachtig S., Lopez-Raez J.A., Gutjahr C. (2019): The role of strigolactones in plant-microbe interactions. Strigolactones : Biology and Applications, 121-142. Go to original source...
  21. Sattar A., Ul-Allah S., Ijaz M. Sher A., Butt M., Abbas T., Irfan M., Fatima T., Alfarraj S., Alharbi S.A. (2021): Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms. Cereal Research Communications, 2021: 1-10. Go to original source...
  22. Scandalios J.G. (1993): Oxygen stress and superoxide dismutases. Plant Physiology, 10: 7-12. Go to original source... Go to PubMed...
  23. Sedaghat M., Sarvestani Z.T., Emam Y., Bidgoli A.M. (2017): Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiology & Biochemistry, 119: 59-69. Go to original source... Go to PubMed...
  24. Siddiqui M.H., Al-Khaishany M.Y., Al-Qutami M.A., Al-Whaibia M.H., Groverb A., Alia H.M., Al-Wahibia M.S. (2015): Morphological and physiological characterization of different genotypes of faba bean under heat stress. Saudi Journal of Biological Sciences, 22: 656-663. Go to original source... Go to PubMed...
  25. Sun W.H., Duan M., Shu D.F., Yang S., Meng Q.W. (2010): Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Reports, 29: 917-926. Go to original source... Go to PubMed...
  26. Wang W., Xia M.X., Chen J., Yuan R., Deng F.N., Shen F.F. (2016a): Gene expression characteristics and regulation mechanisms of superoxide dismutase and its physiological roles in plants under stress. Biochemistry (Mosc), 81: 465-480. Go to original source... Go to PubMed...
  27. Wang W., Xia M.X., Chen J., Deng F.N., Yuan R., Zhang X., Shen F.F. (2016b): Genome-wide analysis of superoxide dismutase gene family in Gossypium raimondii and G. arboreum. Plant Gene, 6: 18-29. Go to original source...
  28. Xu J., Duan X., Yang J., Beeching J.R., Zhang P. (2013): Coupled expression of Cu/Zn-superoxide dismutase and catalase in Cassava improves tolerance against cold and drought stresses. Plant Signaling & Behavior, 8: e24525. Go to original source... Go to PubMed...
  29. Yu Q., Rengel Z. (1999): Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins. Plant Science, 142: 1-11. Go to original source...
  30. Zhang X.R., Xu X.Y. (1992): Comparative experiment on drought resistance and wind erosion resistance among different species of Shaguai. Journal of Arid Land Resources and Environment, 6: 55-62.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.