Hort. Sci. (Prague), 2023, 50(1):45-60 | DOI: 10.17221/107/2021-HORTSCI

In vitro simulation of drought stress in some Iranian Damask rose landracesOriginal Paper

Hanifeh Seyed Hajizadeh1*, Sara Rezaei1, Fataneh Yari2, Volkan Okatan3
1 Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
2 Agricultural Research Institute, Iranian Research Organization for Science and Technology, Tehran, Iran
3 Department of Horticulture, Faculty of Agriculture, Eskiºehir Osmangazi University, Eskiºehir, Türkiye

Rosa damascena is one of the oldest valuable rose flower varieties that is almost drough tolerant. However, selecting and identifying landraces that are more tolerant to drought conditions will be effective in developing the cultivation of the plant under stress. The most important step in developing drought-tolerant plants is the evaluation and identification of resistant and susceptible genotypes. In this case, an experiment was performed under in vitro conditions using five levels (0, 25, 50, 75, and 100 g/L) of polyethylene glycol (PEG) on four landraces of the Damask rose (Maragheh, Urmia, Pakdasht, and Kashan). Based on the findings, the resistance of the different landraces to a water deficit was measured by the Design-Expert software using the response level (RSM) method. The results showed that Maragheh, with the highest fresh and dry weight, total chlorophyll, chlorophyll a, chlorophyll b, proline and an increase in the superoxide dismutase activity, had a high tolerance to drought stress. Moreover, Maragheh with a decreasing leaf number, height, malondialdehyde, hydrogen peroxide and having a higher membrane stability index, showed a better defence mechanism against oxidative stress than the other landraces. Also, after Maragheh, Pakdasht had the best performance compared to the other two landraces up to 75g/L of PEG, but not as well as Maragheh at the highest level of the tested PEG. Urmia and especially Kashan probably do not have much tolerance to drought stress regarding all the results and levels of desirability.

Keywords: Rosa; abiotic stress; proline; water deficit tolerance; micropropagation; biomass; polyethylene glycol

Accepted: March 2, 2023; Prepublished online: March 2, 2023; Published: March 27, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hajizadeh HS, Rezaei S, Yari F, Okatan V. In vitro simulation of drought stress in some Iranian Damask rose landraces. Hort. Sci. (Prague). 2023;50(1):45-60. doi: 10.17221/107/2021-HORTSCI.
Download citation

References

  1. Abid G., Ouertani R. N., Muhovski Y., Jebara S. H., Hidri Y. et al. (2020): Variation in antioxidant metabolism of faba bean (Vicia faba) under drought stress induced by polyethylene glycol reveals biochemical markers associated with antioxidant defense. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 155: 797-806. Go to original source...
  2. Ahmadizadeh M., Valizadeh M., Zaefizadeh M., Shahbazi H. (2011): Antioxidative protection and electrolyte leakage in durum wheat under drought stress condition.  Research Journal of Applied Sciences, 7: 236-246.
  3. Arnon D. I. (1949): Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24: 1-15. Go to original source... Go to PubMed...
  4. Ashoub A., Baeumlisberger M., Neupaertl M., Karas M., Brüggemann W. (2015): Characterization of common and distinctive adjustments of wild barley leaf proteome under drought acclimation, heat stress and their combination. Plant Molecular Biology, 87: 459-471. Go to original source... Go to PubMed...
  5. Bartels D., Salamini F. (2001): Desiccation tolerance in the resurrection Plantcraterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiology, 127: 1346-1353. Go to original source...
  6. Bates L.S., Waldren R.P., Teare I.D. (1973): Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207. Go to original source...
  7. Baydar H., Erbaº S., Kineci S., Kazaz S. (2007): Effect of Tween-20 adding to distillation water on rose oil yield and quality in fresh and fermented flowers of oil-bearing rose (Rosa damascena Mill.). Journal of Faculty Agriculture, 2: 15-20.
  8. Beauchamp C., Fridovich I. (1971): Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44: 276-287. Go to original source... Go to PubMed...
  9. Bose J., Rodrigo-Moreno A., Shabala S. (2014): ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65: 1241-1257. Go to original source... Go to PubMed...
  10. Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. Go to original source...
  11. Carpita N., Sabularse D., Monfezinos D., Delmer D.P. (1979): Determination of the pore size of cell walls of living plant cells. Science, 205: 1144-1147. Go to original source... Go to PubMed...
  12. Close T. J. (1996): Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 97: 795-803. Go to original source...
  13. Draper N.R., Pukelsheim F. (1996): An overview of design of experiments. Statistical Papers, 37: 1-32. Go to original source...
  14. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A. (2009): Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 29: 185-212. Go to original source...
  15. Foyer C.H., Noctor G. (2005): Oxidant and antioxidant signalling in plants: a reevaluation of the concept of oxidative stress in a physiological context. Plant, Cell & Environment, 28: 1056-1071. Go to original source...
  16. Gilss T. (2010): Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biochemistry, 48: 909-930. Go to original source... Go to PubMed...
  17. Göktürk Baydar N., Baydar H. (2005): Essential oil compositions of Turkish oil rose (Rosa damascena Mill.) products. 36th International Symposium on Essential Oils. 5-7 September 2005, Budapest-Hungary.
  18. Hamanishi E.T., Campbell M.M. (2011): Genome-wide responses to drought in forest trees. Forestry, 84: 273-283. Go to original source...
  19. Hasanuzzaman M., Nahar K., Hossain M., Anee T.I., Parvin K., Fujita M. (2017): Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to confer PEG-induced oxidative stress in rapeseed. Journal of Plant Interactions, 12: 323-331. Go to original source...
  20. Haslbeck M., Vierling E. (2015): A first line of stress defense: small heat shock proteins and their function in protein homeostasis. Journal of Molecular Biology, 427: 1537-1548. Go to original source... Go to PubMed...
  21. Horn W.A.H. (1992): Micropropagation of rose (Rosa L.). Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 20: high-tech and micropropagation IV. SpringerVerlag, Germany, 320-342.
  22. Hosseini N.S., Hagh Z.G., Khoshghalb H. (2020): Morphological, antioxidant enzyme activity and secondary metabolites accumulation in response of polyethylene glycol-induced osmotic stress in embryo-derived plantlets and callus cultures of Salvia leriifolia. Plant Cell, Tissue and Organ Culture, 140: 143-155. Go to original source...
  23. Hsu S.Y., Kao C.H. (2003): Differential effect of sorbitol and polyethylene glycol on antioxidant enzymes in rice leaves. Plant Growth Regulation, 39: 83-90. Go to original source...
  24. Hussain M.I., Lyra D.A., Farooq M., Nikoloudakis N., Khalid N. (2016): Salt and drought stresses in safflower: a review. Agronomy for Sustainable Development, 36: 1-31. Go to original source...
  25. Jday A., Rejeb K.B., Slama I., Saadallah K., Bordenave M., Planchais S., Savouré A., Abdelly, C. (2016): Effects of exogenous nitric oxide on growth, proline accumulation and antioxidant capacity in Cakile maritima seedlings subjected to water deficit stress. Functional Plant Biology, 43: 939-948. Go to original source... Go to PubMed...
  26. Kumar R.R., Karajol K., Naik G.R. (2011): Effect of polyethylene glycol induced water stress on physiological and biochemical responses in pigeonpea (Cajanus cajan L. Millsp.). Recent Research in Science and Technology, 3: 148-152.
  27. Li D.G., Li C.D., Sun H.C., Wang W., Liu L. Zhang Y.J. (2010): Effects of drought on soluble protein content and protective enzyme system in cotton leaves. Frontiers of Agriculture in China, 4: 56-62. Go to original source...
  28. Liu W., He Y., Xiang J., Fu C., Yu L.J., Zhang J., Li M. (2011): The physiological response of suspension cell of Capparis spinosa L. to drought stress. Journal of Medicinal Plant Research, 5: 5899-5906.
  29. Liu Y.H., Offler C.E., Ruan Y.L. (2014): A simple, rapid, and reliable protocol to localize hydrogen peroxide in large plant organs by DAB-mediated tissue printing. Frontiers in Plant Science, 5: 745. Go to original source... Go to PubMed...
  30. Lu Z., Neumann P.M. (1998): Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. Journal of Experimental Botany, 49: 1945-1952. Go to original source...
  31. Martinez J.P., Lutts S., Schanck A., Bajji M., Kinet J.M. (2004): Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L. Journal of Plant Physiology, 161: 1041-1051. Go to original source... Go to PubMed...
  32. Martinez X. (2010): Effects of irrigation and nitrogen application on vegetative growth, yield and fruit quality in peaches (Prunus persica L. Batsch cv. 'Andross') for processing. Universitat de Lleida.
  33. Mazurek M., Siekierzyñska A., Jacek B., Litwiñczuk W. (2020): Differences in response to drought stress among highbush blueberry plants propagated conventionally and by tissue culture. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 155: 172-178. Go to original source...
  34. Meeks M., Murray S.C., Hague S., Hays D. (2013): Measuring maize seedling drought response in search of tolerant germplasm. Agronomy, 3: 135-147. Go to original source...
  35. Moller I.M., Jensen P.E., Hansson A. (2007): Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58: 459-481. Go to original source... Go to PubMed...
  36. Murashige T., Skoog F. (1962): A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. Go to original source...
  37. Myers R.H., Montgomery D.C., Anderson-Cook C.M. (2016): Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
  38. Nahar K., Hasanuzzaman M., Alam M.M., Rahman A., Mahmud J.A., Suzuki T., Fujita M. (2017): Insights into spermine-induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma, 254: 445-460. Go to original source... Go to PubMed...
  39. Pandey R., Agarwal R.M. (1998): Water stress-induced changes in proline contents and nitrate reductase activity in rice under light and dark conditions. Physiology and Molecular Biology of Plants, 4: 53-57.
  40. Pane R.F., Damanik R.I., Khardinata E.H. (2018): Germination performance of selected local soybean (Glycine max (L.) Merrills) cultivars during drought stress induced by Polyethylene Glycol (PEG). Earth and Environmental Science, 122: 012054. Go to original source...
  41. Pati P.K., Sharma M., Sood A., Ahuja P.S. (2005): Micropropagation of Rosa damascena and R. bourboniana in liquid cultures. In: Anne Kathrine Hvoslef-Eide, Walter Preil: Liquid Culture Systems for in vitro Plant Propagation: 373-385. Go to original source...
  42. Pourghayoumi M., Bakhshi D., Rahemi M., Kamgar-Haghighi A.A., Aalami A. (2017): The physiological responses of various pomegranate cultivars to drought stress and recovery in order to screen for drought tolerance. Scientia Horticulturae, 217: 164-172. Go to original source...
  43. Pratap V., Kumar Sharma Y. (2010): Impact of osmotic stress on seed germination and seedling growth in black gram (Phaseolus mungo).  Journal of Environmental Biology, 31: 721.
  44. Razavizadeh R., Farahzadianpoor F., Adabavazeh F., Komatsu S. (2019): Physiological and morphological analyses of Thymus vulgaris L. in vitro cultures under polyethylene glycol (PEG)-induced osmotic stress in vitro. Cellular & Developmental Biology - Plant, 55: 342-357. Go to original source...
  45. Sahoo M.R., Devi T.R., Dasgupta M., Nongdam P., Prakash N. (2020): Reactive oxygen species scavenging mechanisms associated with polyethylene glycol mediated osmotic stress tolerance in chinese potato. Scientific Reports, 10: 1-9. Go to original source... Go to PubMed...
  46. Sarmadi M., Karimi N., Palazón J., Ghassempour A., Mirjalili M.H. (2019): Improved effects of polyethylene glycol on the growth, antioxidative enzymes activity and taxanes production in a Taxus baccata L. callus culture.  Plant Cell, Tissue and Organ Culture, 137: 319-328. Go to original source...
  47. Seyed Hajizadeh H., Ebadi B., Morshedloo M.R., Abdi Ghazijahani A. (2021): Morphological and Phytochemical Diversity among Some Iranian Rosa damascena Mill. Landraces. Journal of Ornamental Plants, 11: 243-255.
  48. Sharma P., Jha A.B., Dubey R.S., Pessarakli M. (2012): Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012: 1-26. Go to original source...
  49. Shivakrishna P., Reddy K. A., Rao D.M. (2018): Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots.  Saudi Journal of Biological Sciences, 25: 285-289. Go to original source... Go to PubMed...
  50. Su X., Wei F., Huo Y., Xia Z. (2017): Comparative physiological and molecular analyses of two contrasting flue-cured tobacco genotypes under progressive drought stress. Frontiers in Plant Science, 8: 1-13. Go to original source... Go to PubMed...
  51. Verslues P.E., Ober E.S., Sharp R.E. (1998): Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiology, 116: 1403-1412. Go to original source... Go to PubMed...
  52. Wilkins O., Waldron L., Nahal H., Provart N.J., Campbell M.M. (2009): Genotype and time of day shape the Populus drought response. The Plant Journal, 60: 703-715. Go to original source... Go to PubMed...
  53. Xie T., Gu W., Zhang L., Li L., Qu D., Li. C., Meng Y., Li J., Wei S. (2018): Modulating the antioxidant system by exogenous 2-(3, 4-dichlorophenoxy) triethylamine in maize seedlings exposed to polyethylene glycol-simulated drought stress. PLoS One, 13: 1-22. Go to original source... Go to PubMed...
  54. Xu C., Huang B. (2010): Comparative analysis of drought responsive proteins in Kentucky bluegrass cultivars contrasting in drought tolerance. Crop Science, 50: 2543-2552. Go to original source...
  55. Yang F., Miao L.F. (2010): Adaptive responses to progressive drought stress in two poplar species originating from different altitudes. Silva Fennica, 44: 23-37. Go to original source...
  56. Zhang Z.B., Shao H.B., Xu P., Chu L.Y., Lu Z.H., Tian J.Y. (2007): On evolution and perspectives of bio-watersaving. Colloids and Surfaces B: Biointerfaces, 55: 1-9. Go to original source... Go to PubMed...
  57. Zou J.J., Wei F.J., Wang C., Wu J.J., Ratnasekera D., Liu W.X., Wu W.H. (2010): Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid-and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiology, 154: 1232-1243. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.