Hort. Sci. (Prague), 2022, 49(4):225-233 | DOI: 10.17221/108/2021-HORTSCI
The effects of arbuscular mycorrhizal fungi and deficit irrigation on the yield and sugar content of watermelons (Citrullus lanatus)Original Paper
- 1 College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- 2 Agricultural College, Sumy National Agrarian University, Sumy, Ukraine
Many studies have demonstrated that arbuscular mycorrhizal fungi (AMF) and deficit irrigation (DI) have positive effects on the fruit yield or quality. This study aims to test whether the watermelon sugar content and yield can be improved by appropriate amounts of AMF and DI methods and to clarify the underlying physiological mechanism. Diploid and triploid watermelon cultivars and their pumpkin rootstock-grafted seedlings were treated with AMF, DI and DI + AMF in a randomised complete block design with five replications. The results showed that DI significantly reduced the relative water content (RWC), PN, alkaline α-galactosidase activity, but increased the insoluble acid invertase (IAI), sucrose synthase (SuSy) and sucrose phosphate synthase (SPS) activities compared with the well-watered (WW) treatment, which led to a decrease in the fruit yield and an increase in the fruit sugar content. Although the AMF improved the RWC, PN and alkaline α-galactosidase, IAI, SuSy and SPS activities in all the watermelon lines under both the DI and WW conditions, the improvement magnitude of these parameters was more pronounced in the pumpkin-root watermelon lines than the corresponding own-root watermelon lines, especially under the DI condition. The integrated application of AMF and DI increased the fruit yield to a level similar to the WW value in the pumpkin-root watermelon lines and sugar content to an optimal level in all the watermelon lines.
Keywords: pumpkin-root; relative water content; alkaline α-galactosidase; insoluble acid invertase; sucrose synthase; sucrose phosphate synthase
Received: November 11, 2021; Accepted: April 5, 2022; Prepublished online: October 15, 2022; Published: December 22, 2022 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Adu M.O., Yawson D.O., Armah F.A., Asare P.A., Frimpong K.A. (2018): Meta-analysis of crop yields of full, deficit, and partial root-zone drying irrigation. Agricultural Water Management, 197: 79-90.
Go to original source...
- Carrijo D.R., Lundy M.E., Linquist B.A. (2017): Rice yields and water use under alternate wetting and drying irrigation. A meta-analysis. Field Crops Research, 203: 173-180.
Go to original source...
- Cartmilla D.L., Alarcón A., Volderc A., Valdez-Aguilard L.A., Arnoldc M.A., Cartmille A.D. (2012): Arbuscular mycorrhizal fungi alleviate growth of Ulmus parvifolia Jacq. at suboptimal planting depths. Scientia Horticulturae, 144: 74-80.
Go to original source...
- Chang H., Huang H.E., Cheng C.F. (2017): Constitutive expression of a plant ferredoxin-like protein (pflp) enhances capacity of photosynthetic carbon assimilation in rice (Oryza sativa). Transgenic Research, 26: 279-289.
Go to original source...
Go to PubMed...
- Dai N., Cohen S., Portnoy V. (2011): Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Molecular Biology, 76: 1-18.
Go to original source...
Go to PubMed...
- Dias M.C., Brüggemann W. (2007): Differential inhibition of photosynthesis under drought stress in Flaveria species with different degrees of development of the C4 syndrome. Photosynthetica, 45: 75-84.
Go to original source...
- Ezzo M.I., Mohamed A.S., Glala A.A., Saleh S.A. (2020): Utilization of grafting technique for sustaining cantaloupe productivity and quality under deficit irrigation water. Bulletin of the National Research Centre, 44: 1-11.
Go to original source...
- Faghih S., Zamani Z., Fatahi R., Liaghat A. (2019): Effects of deficit irrigation and kaolin application on vegetative growth and fruit traits of two early ripening apple cultivars. Biological Research, 52: 43.
Go to original source...
Go to PubMed...
- Gao Z., Schaffer A.A. (1999): A novel alkaline alpha-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiology, 119: 979-988.
Go to original source...
Go to PubMed...
- Ghannem A., Aissa I.B., Majdoub R. (2021): Effects of regulated deficit irrigation applied at different growth stages of greenhouse grown tomato on substrate moisture, yield, fruit quality, and physiological traits. Environmental Science and Pollution Research, 28: 46553-46564.
Go to original source...
Go to PubMed...
- Gianinazzi S., Vosátka M. (2004): Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Canadian Journal of Botany-revue Canadienne de Botanique, 82: 1264-1271.
Go to original source...
- Godt D.E., Roitsch T. (1997): Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiology, 115 : 273-282.
Go to original source...
Go to PubMed...
- Hassell R.L., Memmott F., Liere D.G. (2008): Grafting methods for watermelon production. Horticultural Science (Prague), 43: 1677-1679.
Go to original source...
- Hayat S., Ali B., Hasan S.A., Ahmad A. (2007): Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60: 33-41.
Go to original source...
- Huang Y., Zhao L.Q., Kong Q.S., Cheng F., Niu M.G., Xie J.J., Nawaz M.A., Bie Z.L. (2016): Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Horticultural Plant Journal, 2: 105-113.
Go to original source...
- Iwatsubo T., Nakagawa H., Ogura N. (1992): Acid invertase of melon fruit: immunochemical detection of acid invertases. Plant and Cell Physiology, 33: 1127-1133.
- Jovanovic Z., Stikic R. (2018): Partial root-zone drying technique: from water saving to the improvement of a fruit quality. Frontiers in Sustainable Food Systems, 1: 1-9.
Go to original source...
- Kazadi A.T., Lwalaba J.L.W., Ansey B.K., Muzulukwau J.M., Katabe G.M., Karul M.I., Baert G., Haesaert G., Mundende R.P.M. (2022): Effect of phosphorus and arbuscular mycorrhizal fungi (AMF) inoculation on growth and productivity of maize (Zea mays L.) in a tropical ferralsol. Gesunde Pflanzen, 74: 159-165.
Go to original source...
- Lin X., Zhang Y., Kuang H., et al. (2013): Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae. BMC Genomics, 14: 335.
Go to original source...
Go to PubMed...
- Liu J., Guo S., He H., Zhang H.Y., Gong G.O., Ren Y., Xu Y. (2013): Dynamic characteristics of sugar accumulation and related enzyme activities in sweet and non-sweet watermelon fruits. Acta Physiologiae Plantarum, 35: 3213-3222.
Go to original source...
- Mathur S., Tomar R.S., Jajoo A. (2019): Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynthesis Research, 139: 227-238.
Go to original source...
Go to PubMed...
- Miron D., Schaffer A.A. (1991): Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiology, 95: 623-627.
Go to original source...
Go to PubMed...
- Motaleb N.A.A., Elhady S.A.A., Ghoname A.A. (2020): AMF and Bacillus megaterium neutralize the harmful effects of salt stress on bean plants. Gesunde Pflanzen, 72: 29-39.
Go to original source...
- Sensoy S., Ertek A., Gedik I., Kucukyumuk C. (2007): Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.). Agricultural Water Management, 88: 269-274.
Go to original source...
- Shireen F., Nawaz M.A., Xiong M., Ahmad A., Sohail H., Chen Z., Abouseif Y., Huang Y., Bie Z.L. (2020): Pumpkin rootstock improves the growth and development of watermelon by enhancing uptake and transport of boron and regulating the gene expression. Plant Physiology and Biochemistry, 154: 204-218.
Go to original source...
Go to PubMed...
- Silvestri A., Fiorilli V., Miozzi, Accotto G.P., Turina M., Lanfranco L. (2019): In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics, 20: 169.
Go to original source...
Go to PubMed...
- Tarnabi Z.M., Iranbakhsh A., Mehregan I., Ahmadvand R. (2020): Impact of arbuscular mycorrhizal fungi (AMF) on gene expression of some cell wall and membrane elements of wheat (Triticum aestivum L.) under water deficit using transcriptome analysis. Physiology and Molecular Biology of Plants, 26: 143-162.
Go to original source...
Go to PubMed...
- Yativ M., Harary I., Wolf S. (2010): Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis. Journal of Plant Physiology, 167: 589-596.
Go to original source...
Go to PubMed...
- Zhang B., Tolstikov V., Turnbull C. (2010): Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proceedings of the National Academy of Sciences of the United States of America, 107: 13532-13537.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.