Hort. Sci. (Prague), 2022, 49(2):71-77 | DOI: 10.17221/27/2021-HORTSCI

Identification of chemical components in Dianthus determined by widely targeted metabolomicsOriginal Paper

Xuhong Zhou ORCID...*, Xiaomi Yang*, Ruifen Sun, Junliang Wang, Yu Mao, Guanhua Cao, Miaomiao Wang
Office of Science and Technology, Yunnan University of Chinese Medicine, Kunming, P.R. China

The chemical composition of the secondary metabolites is of great significance to the quality control of agricultural products. The genus Dianthus is famous for its beautiful flowers in the cut flower trade and also used in the traditional Chinese medicinal system and food market. However, the chemical composition in Dianthus is still unknown. The current study examined the levels of different metabolites of the flowers in Dianthus caryophyllus, Dianthus chinensis and Dianthus superbus via the use of the widely targeted metabolomic strategy. We obtained the structure and content of 423 metabolites in Dianthus, which included the primary and secondary metabolites. The principal component analysis was able to clearly seperate Dianthus caryophyllus, Dianthus chinensis and Dianthus superbus based on the flower metabolites. The differential metabolites can be categorised into 11 different classes, the majority were flavonoids, amino acids and their derivatives, phenolic acids and lipids. The results of this study provide important information for the effective use of Dianthus flowers in edible, medicinal and therapeutic aspects.

Keywords: bioactive compounds; edible flowers; Dianthus; LC-MS; phytochemistry

Published: June 29, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhou X, Yang X, Sun R, Wang J, Mao Y, Cao G, Wang M. Identification of chemical components in Dianthus determined by widely targeted metabolomics. Hort. Sci. (Prague). 2022;49(2):71-77. doi: 10.17221/27/2021-HORTSCI.
Download citation

Supplementary files:

Download fileTable S1.xlsx

File size: 43.53 kB

Download fileTable S2.xlsx

File size: 10.22 kB

Download fileTable S3.xlsx

File size: 32.38 kB

References

  1. Al-Snafi A. (2017): Chemical contents and medical importance of Dianthus caryophyllus - A review. IOSR Journal of Pharmacy, 7: 61-71. Go to original source...
  2. Alabdulkarim B., Bakeet Z.A.N., Arzoo S. (2012): Role of some functional lipids in preventing diseases and promoting health. Journal of King Saud University - Science, 24: 319-329. Go to original source...
  3. Barakat A., Shoman S., Abd-Elshafy D., Alfarouk O. (2009): Antiviral activity and mode of action of Dianthus caryophyllus L. and Lupinus termes L. seed extracts against in vitro herpes simplex and hepatitis a viruses infection. Journal Microbiology and Antimicrobials, 2: 23-29.
  4. Brittenden J., Park K.G.M., Heys S.D., Ross C., Eremin O. (1994): L-arginine stimulates host defenses in patients with breast cancer. Surgery, 115: 205-212.
  5. Chandra S., Rawat D.S., Chandra D., Rastogi J. (2016): Nativity, phytochemistry, ethnobotany and pharmacology of Dianthus caryophyllus. Research Journal of Medicinal Plant, 10: 1-9. Go to original source...
  6. D'Amelia V., Aversano R., Chiaiese P., Carputo D. (2018): The antioxidant properties of plant flavonoids: Their exploitation by molecular plant breeding. Phytochemistry Reviews, 17: 611-625. Go to original source...
  7. Ding C., Zhang W., Li J., Lei J., Yu J. (2013): Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus. Natural Product Reports, 27: 1691-1694. Go to original source... Go to PubMed...
  8. Fernandes L., Pereira J.A., Saraiva J.A., Ramalhosa E., Casal S. (2019): Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Research International, 123: 771-778. Go to original source... Go to PubMed...
  9. Finkelstein J., Heemels M.-T., Shadan S., Weiss U. (2014): Lipids in health and disease. Nature, 510: 47. Go to original source... Go to PubMed...
  10. Gou J., Zou Y., Ahn J. (2011): Enhancement of antioxidant and antimicrobial activities of Dianthus superbus, Polygonum aviculare, Sophora flavescens, and Lygodium japonicum by pressure-assisted water extraction. Food Science and Biotechnology, 20: 283-287. Go to original source...
  11. Hayakawa K., Kimura M., Kamata K. (2002): Mechanism underlying gamma-aminobutyric acid-induced antihypertensive effect in spontaneously hypertensive rats. European Journal of Pharmacology, 438: 107-113. Go to original source... Go to PubMed...
  12. Kamei Y., Hatazawa Y., Uchitomi R., Yoshimura R., Miura S. (2020): Regulation of skeletal muscle function by amino acids. Nutrients, 12: 261. Go to original source... Go to PubMed...
  13. Kazuhito H., Masayuki K., Keiko K., Keisuke M., Hiroshi S., Yukio Y. (2004): Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. British Journal of Nutrition, 92: 411-417. Go to original source... Go to PubMed...
  14. Koike A.C.R. (2019): Antioxidant activity of Dianthus chinensis flowers processed by ionizing radiation. Brazilian Journal of Radiation Sciences, 7: 1-9. Go to original source...
  15. Koz³owska A., Szostak-Wegierek D. (2014): Flavonoids-food sources and health benefits. Roczniki Panstwowego Zakadu Higieny, 65: 79-85.
  16. Kumar N., Goel N. (2019): Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24: e00370. Go to original source... Go to PubMed...
  17. López-Expósito I., Castillo A., Yang N., Liang B., Li X. (2011): Chinese herbal extracts of Rubia cordifolia and Dianthus superbus suppress IgE production and prevent peanut-induced anaphylaxis. Chinese Medicine, 6: 35. Go to original source... Go to PubMed...
  18. Leehuang S., Kung H., Huang P.L., Huang P.L., Li B., Huang P., Huang H.I., Chen H. (1991): A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS Letters, 291: 139-144. Go to original source... Go to PubMed...
  19. Li P., Yin Y.L., Li D., Kim S.W., Wu G. (2007): Amino acids and immune function. British Journal of Nutrition, 98: 237-252. Go to original source... Go to PubMed...
  20. Lu B., Li M., Yin R. (2015): Phytochemical content, health benefits, and toxicology of common edible flowers: A Review (2000-2015). Critical Reviews in Food Science and Nutrition, 56: 130-148. Go to original source... Go to PubMed...
  21. Luckose F., Pandey M.C., Radhakrishna K. (2015): Effects of amino acid derivativeson physical, mental, and physiological activities. Critical Reviews in Food Science and Nutrition, 55: 1793-1807. Go to original source... Go to PubMed...
  22. Martineti V., Tognarini I., Azzari C., Sala S.C., Clematis F., Dolci M., Lanzotti V., Tonelli F., Brandi M.L., Curir P. (2010): Inhibition of in vitro growth and arrest in the G0/G1 phase of HCT8 line human colon cancer cells by kaempferide triglycoside from Dianthus caryophyllus. Phytotherapy Research, 24: 1302-1308. Go to original source... Go to PubMed...
  23. Meurer C.M., Mees M., Mariano L.N.B., Boeing T., Somensi L.B., Mariott M., da Silva R.d.C.M.V.d.A.F., dos Santos A.C., Longo B., Santos França T.C., Klein-Júnior L.C., de Souza P., de Andrade S.F., da Silva L.M. (2019): Hydroalcoholic extract of Tagetes erecta L. flowers, rich in the carotenoid lutein, attenuates inflammatory cytokine secretion and improves the oxidative stress in an animal model of ulcerative colitis. Nutrition Research, 66: 95-106. Go to original source... Go to PubMed...
  24. Mutlu K., Sarikahya N.B., Yasa I., Kirmizigul S. (2016): Dianthus erinaceus var. erinaceus: Extraction, isolation, characterization and antimicrobial activity investigation of novel saponins. Phytochemistry Letters, 16: 219-224. Go to original source...
  25. Nguyen C., Baskaran K., Pupulin A., Ruvinov I., Zaitoon O., Grewal S., Scaria B., Mehaidli A., Vegh C., Pandey S. (2019): Hibiscus flower extract selectively induces apoptosis in breast cancer cells and positively interacts with common chemotherapeutics. BMC Complementary and Alternative Medicine, 19: 98. Go to original source... Go to PubMed...
  26. Ninomiya K. (2016): Food Science of Dashi and Umami Taste. Yakugaku zasshi Journal of the Pharmaceutical Society of Japan, 136: 1327-1334. Go to original source... Go to PubMed...
  27. Nowicka P., Wojdy³o A. (2019): Anti-hyperglycemic and anticholinergic effects of natural antioxidant contents in edible flowers. Antioxidants, 8: 308. Go to original source... Go to PubMed...
  28. Phonsatta N., Deetae P., Luangpituksa P., Grajeda Iglesias C., Figueroa-Espinoza M.C., Lecomte J., Villeneuve P., Decker E.A., Visessanguan W., Panya A. (2017): Comparison of antioxidant evaluation assays for investigating antioxidative activity of gallic acid and its alkyl esters in different food matrices. Journal of Agricultural and Food Chemistry, 65: 7509-7518. Go to original source... Go to PubMed...
  29. Rop O., Mlcek J., Jurikova T., Neugebauerova J., Vabkova J. (2012): Edible flowers-a new promising source of mineral elements in human nutrition. Molecules, 17: 6672-6683. Go to original source... Go to PubMed...
  30. Rosa L.D.S., Silva N.J.A., Soares N.C.P., Monteiro M.C., Teodoro A.J. (2016): Anticancer properties of phenolic acids in colon cancer - a review. Journal of Nutrition & Food Sciences, 6: 2.
  31. Saibabu V., Fatima Z., Khan L.A., Hameed S. (2015): Therapeutic potential of dietary phenolic acids. Advances in Pharmacological Sciences, ID: 823539. Sánchez-Guerrero I.M., Escudero A.I., Bartolom; B., Palacios R. (1999): Occupational allergy caused by carnation (Dianthus caryophyllus). Journal of Allergy & Clinical Immunology, 104: 181-185. Go to original source... Go to PubMed...
  32. Tong Y., Luo J.G., Wang R., Wang X.B., Kong L.Y. (2012): New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus. Bioorganice and Medicinal Chemistry Letters, 22: 1908-1911. Go to original source... Go to PubMed...
  33. Wang D., Zhang L., Huang X., Wang X., Yang R., Mao J., Wang X., Wang X., Zhang Q., Li P. (2018): Identification of nutritional components in black sesame determined by widely targeted metabolomics and traditional Chinese medicines. Molecules, 23: 1180. Go to original source... Go to PubMed...
  34. Wang Y., Li X., Li Y., Fan Y., Li Y., Cao Y., An W. Shi Z., Zhao J., Guo S. (2020): Changes in metabolome and nutritional quality of lycium barbarum fruits from three typical growing areas of China as revealed by widely targeted metabolomics. Metabolites, 10: 46. Go to original source... Go to PubMed...
  35. Waraho T., Mcclements D.J., Decker E.A. (2011): Mechanisms of lipid oxidation in food dispersions. Trends in Food Science & Technology, 22: 3-13. Go to original source...
  36. Weon J.B., Ma C.J. (2016): Simultaneous determination of eight bioactive compounds isolated from Dianthus superbus by high-performance liquid chromatography. Planta Medica, 82: P1053. Go to original source...
  37. Wetzel K., Lee J., Lee C.S., Binkley M. (2010): Comparison of microbial diversity of edible flowers and basil grown with organic versus conventional methods. Canadian Journal of Microbiology, 56: 943-951. Go to original source... Go to PubMed...
  38. Yang P., Yang Y., Feng Z., Jiang J., Zhang P. (2019): Six new compounds from the flowers of Chrysanthemum morifolium and their biological activities. Bioorganic Chemistry, 82: 139-144. Go to original source... Go to PubMed...
  39. Yu J., Liao Z., Lei J., Hu X. (2007): Antioxidant and cytotoxic activities of various fractions of ethanol extract of Dianthus superbus. Food Chemistry, 104: 1215-1219. Go to original source...
  40. Yu J., Yin Y., Lei J., Zhang X., Chen W., Ding C., Wu S., He X., Liu Y., Zou G. (2012): Activation of apoptosis by ethyl acetate fraction of ethanol extract of Dianthus superbus in HepG2 cell line. Cancer Epidemiology, 36: e40-e45. Go to original source... Go to PubMed...
  41. Zhang A., Sun H., Wang Z., Sun W., Wang P., Wang X. (2010): Metabolomics: Towards understanding traditional Chinese medicine. Planta Medica, 76: 2026-2035. Go to original source... Go to PubMed...
  42. Zou S., Wu J., Shahid M.Q., He Y., Lin S., Liu Z., Yang X. (2020): Identification of key taste components in loquat using widely targeted metabolomics. Food Chemistry, 323: 126822. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.