Hort. Sci. (Prague), 2021, 48(1):12-21 | DOI: 10.17221/69/2020-HORTSCI

Evaluation of ElecTIS bioreactor for the micropropagation of Malus sylvestris (L.) Mill., an important autochthonous species of AlbaniaOriginal Paper

Valbona Sota1, Carla Benelli ORCID...*,2, Brunilda Çuko1, Elektra Papakosta3, Claudio Depaoli4, Maurizio Lambardi2, Efigjeni Kongjika5
1 Department of Biotechnology, Faculty of Natural Sciences, Tirana, Albania
2 Institute of BioEconomy, National Research Council (CNR/IBE), Sesto Fiorentino (Florence), Italy
3 Center of Agricultural Technologies Transfer, Vlora, Albania
4 Laboratory of Micropropagation Predaia (Trento), Italy
5 Section of Natural and Technical Sciences, Albanian Academy of Sciences, Tirana, Albania

Malus sylvestris (L.) Mill., an economically-important fruit tree, is native to Albania and in many parts of Europe. It is cultivated as an ornamental tree, while its fruits are collected for food and a source of antioxidant substances. It is included in The IUCN Red List of Threatened Species. For these reasons, it is very important to optimise a micropropagation protocol, in order to obtain great numbers of clonal plantlets for ex situ conservation and production purposes. A liquid culture in a temporary immersion system (TIS) is a recently-proposed system for large-scale in vitro plant propagation. In this study, lateral buds of M. sylvestris were inoculated in MS medium with BAP (1 mg/L) and NAA (0.1 mg/L). In order to avoid oxidative stress, different antioxidants were previously tested with the culture in a gelled medium, and the combination of ascorbic acid and citric acid (both at 100 mg/L) was selected for the following culture in TIS. Stabilised explants were then cultivated in ElecTIS, an innovative TIS bioreactor, and in a semisolid medium, after which the two culture systems were evaluated. Overall, the ElecTIS showed to be more effective for all the tested parameters.

Keywords: apple; in vitro propagation; liquid culture; oxidative stress; temporary immersion system; TIS

Published: March 31, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Sota V, Benelli C, Çuko B, Papakosta E, Depaoli C, Lambardi M, Kongjika E. Evaluation of ElecTIS bioreactor for the micropropagation of Malus sylvestris (L.) Mill., an important autochthonous species of Albania. Hort. Sci. (Prague). 2021;48(1):12-21. doi: 10.17221/69/2020-HORTSCI.
Download citation

References

  1. Alabarrán J., Bertrand B., Lartaud M., Etienne H. (2005): Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tissue and Organ Culture, 81: 27-36. Go to original source...
  2. Be L.V., Debergh P.C. (2006): Potential low cost micropropagation of pineapple (Ananas comosus). South African Journal of Botany, 72: 191-194. Go to original source...
  3. Benelli C., De Carlo A. (2018): In vitro multiplication and growth improvement of Olea europaea L. cv. Canino with temporary immersion system (Plantform&trade). 3 Biotech, 8: 317. Go to original source... Go to PubMed...
  4. Bhatt A., Kansal S., Singh R., Sood C.H. (2012): Low-cost tissue culture procedures for micropropagation of apple root stocks. International Journal of Developmental Biology, 6: 67-72.
  5. Boudabous M., Mars M., Marzougui N., Ferchichi A. (2010): Micropropagation of apple (Malus domestica L. cultivar Douce de Djerba) through in vitro culture of axillary buds. Acta Botanica Gallica, 157: 513-524. Go to original source...
  6. Capuana M., Depaoli C., Ozudogru E.A., Lambardi M. (2018): Una nuova proposta per la coltura liquida in immersione temporanea: il bioreattore 'ElecTIS'. Acta Italus Hortus, 21: 98-100. (with English abstract).
  7. Carvalho L., Ozudogru E.A., Lambardi M., Paiva L. (2019): Temporary immersion system for micropropagation of tree species: a bibliographic and systematic review. Notulae Botanica Horti Agrobotanici, 47: 269-277. Go to original source...
  8. Chakrabarty D., Hahn E.J., Yoon Y.J., Paek K.Y. (2003): Micropropagation of apple rootstock M.9 EMLA using bioreactor. Journal of Horticultural Science and Biotechnology, 78: 605-609. Go to original source...
  9. Damiano C., Arias Padro M.D., Frattarelli A. (2008): Propagation and establishment in vitro of myrtle (Myrtus communis L.), pomegranate (Punica granatum L.) and mulberry (Morus alba L.). Propagation of Ornamental Plants, 8: 3-8.
  10. Dey S. (2005): Cost-effective mass cloning of plants in liquid media using a novel Growtek bioreactor. In: Hvoslef-Eide A.K., Preil W. (eds), Liquid Culture Systems for In Vitro Plant Propagation. Springer, Dordrecht: 127-141. Go to original source...
  11. Dobránszki J., Teixeira da Silva J.A. (2010): Micropropagation of apple - A review. Biotechnology Advances, 28: 462-88. Go to original source... Go to PubMed...
  12. Etienne H., Berthouly M. (2002): Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture, 69: 215-231. Go to original source...
  13. Firoozabady E., Gutterson N. (2003): Cost-effective in vitro propagation methods for pineapple. Plant Cell Reports, 21: 844-850. Go to original source... Go to PubMed...
  14. Gatica-Arias A.M., Arrieta-Espinoza G., Esquivel A.M.E. (2008): Plant regeneration via indirect somatic embryogenesis and optimisation of genetic transformation in Coffea arabica L. cvs Caturra and Catuaí. Electronic Journal of Biotechnology, 11: 1-12. Go to original source...
  15. Gatti E., Sgarbi E., Ozudogru E.A., Lambardi M. (2017): The effect of PlantformTM bioreactor on micropropagation of Quercus robur in comparison to a conventional in vitro culture system on gelled medium, and assessment of the microenvironment influence on leaf structure. Plant Biosystems, 151: 1129-1136. Go to original source...
  16. Georgiev V., Schumann A., Pavlov A., Bley T. (2014): Temporary immersion systems in plant biotechnology. Engineering in Life Sciences, 14: 607-621. Go to original source...
  17. Grazhdani M., Kongjika E., Sota V., Xhixha E. (2014): Avoidance of polyphenolic oxidation of explants of some albanian cultivars of Malus sp. during early micropropagation stages. In: Proceedings of "2nd International Conference on Applied Biotechnology". Tirana, Albania: 99-107.
  18. GRIN (2010): Germplasm Resources Information Network (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. Available at http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl
  19. Hutchinson J.F. (1984): Factors affecting shoot proliferation and root initiation in organ cultures of the apple Norther Spy. Scientia Horticulturae, 22: 347-358. Go to original source...
  20. IUCN (2019): The IUCN Red List of threatened species. Version 2019-1. Available at https://www.iucnredlist.org
  21. Jafarkhani Kermani M., Hosseini Z.S., Habashi A.A. (2009): A refined tissue culture medium for in vitro proliferation of apple rootstocks. Acta Horticulturae (ISHS), 829: 313-318. Go to original source...
  22. Kere¹a S., Mihoviloviæ Bo¹njak A., Bariæ M., Habu¹ Jerèiæ I., ©arèeviæ H., Bi¹ko A. (2012): Efficient axillary shoot proliferation and in vitro rooting of apple cv. 'Topaz'. Notulae Botanica Horti Agrobotanici, 40: 113-118. Go to original source...
  23. Kongjika E., Zekaj Z.H., Çaushi E., Stamo I. (2002): Bioteknologjia e bimëve - Kulturat "in vitro". Academy of Sciences of Albania, Tirana, Albania: 20-27. (in Albanian).
  24. Laimer Da Câmara Machado M., Hanzer V., Kalthoff B., Weiss H., Mattanovich D., Regner F., Katinger F.W.D. (1991): A new, efficient method using 8-hydroxy-quinolinol-sulfate for the initiation and establishment of tissue cultures of apple from adult material. Plant Cell Tissue and Organ Culture, 27: 155-160. Go to original source...
  25. Lambardi M. (2012): Micropropagazione in coltura liquida con sistema ad immersione temporanea. Rivista di Frutticoltura e Ortofloricoltura, 12: 32-38. (with English abstract).
  26. Lambardi M., Ozudogru E.A., Jain S.M. (2013): Protocols for Micropropagation of Selected Economically-Important Horticultural Plants. Methods in Molecular Biology, Vol. 994. Springer, New York Heidelberg Dordrecht London: XVI: 488. Go to original source...
  27. Lyam P.T., Musa M.L., Jamaleddine Z.O., Okere A.U., Odofin W.T. (2012): The potential of temporary immersion bioreactors (TIBs) in meeting crop production demand in Nigeria. Journal of Biology and Life Science, 3: 66-86. Go to original source...
  28. Mbiyu M., Muthoni M., Kabira J., Muchira C.H., Pwaipwai P., Ngaruiya J., John Onditi J., Otiemo S. (2012): Comparing liquid and solid media on the growth of plantlets from three Kenyan potato cultivars. American Journal of Experimental Agriculture, 2: 81-89. Go to original source...
  29. Mehrotra S., Goel M.K., Kukreja A.K., Mishra B.N. (2007): Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. African Journal of Biotechnology, 6: 1484-1492.
  30. Mehta M., Ram R., Bhattacharya A. (2014): A simple and cost effective liquid culture system for the micropropagation of two commercially important apple rootstocks. Indian Journal of Experimental Biology, 52: 748-754.
  31. Modgil M., Sharma D.R., Bhardwaj S.V. (1999): Micropropagation of apple cv. 'Tydeman's' 'Early Worcester'. Scientia Horticulturae, 81: 179-188. Go to original source...
  32. Murashige T., Skoog F. (1962): A revised medium for rapid growth and bioassays with tabacco cultures. Physiologia Plantarum, 15: 473-497. Go to original source...
  33. Pence V.C. (2011): Evaluating costs for the in vitro propagation and preservation of endangered plant species. In vitro Cellular & Development Biology-Plant, 47: 176-187. Go to original source...
  34. Pierik R.L.M. (1987): Vegetative propagation. In: Pierik R.L.M. (ed.): In Vitro Culture of Higher Plants. Martinus Nijhoff Publishers, Dordrecht, Boston: 183-230. Go to original source...
  35. Ramírez-Mosqueda M.A., Iglesias-Andreu L.G. (2016): Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cellular and Development Biology-Plant, 52: 154-160. Go to original source...
  36. Stojiljkoviæ D., Arsiæ I., Tadiæ V. (2016): Extracts of wild apple fruit (Malus sylvestris (L.) Mill., Rosaceae) as a source of antioxidant substances for use in production of nutraceuticals and cosmeceuticals, Industrial Crops and Products, 80: 165-176. Go to original source...
  37. Takayama S., Akita M. (1994): The types of bioreactors used for shoots and embryos. Plant Cell, Tissue and Organ Culture, 39: 147-156. Go to original source...
  38. Teixeira Da Silva J.A., Dobránszki J. (2013): How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Scientia Horticulturae, 159: 59-66. Go to original source...
  39. Thorpe T.A., Harry I.S. (1997): Application of plant tissue culture to horticulture. Acta Horticulturae (ISHS), 447: 39-50. Go to original source...
  40. Venutolo S.A., Aguilar T.S. (2015): Mass micropropagation of Stevia rebaudiana Bertoni in temporary immersion systems. Cultivos tropicales, 36: 50-57.
  41. Volz R.K., Mcghie T. (2011): Genetic variability in apple fruit polyphenol composition in Malus domestica and Malus sieversii germplasm grown its of Fuji apple and Junhua pear cultured in vitro. Journal of Horticultural Science, 69: 833-839.
  42. Zhu L.H., Li X.Y., Welander M. (2005): Optimization of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. Plant Cell, Tissue and Organ Culture, 81: 313-318. Go to original source...
  43. Ziv M. (2005): Simple bioreactors for mass propagation of plants. Plant Cell, Tissue and Organ Culture, 81: 277-285. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.