Hort. Sci. (Prague), 2020, 47(4):181-193 | DOI: 10.17221/18/2020-HORTSCI

Determination of the pomological and nutritional properties of selected plum cultivars and minor fruit speciesOriginal Paper

Jan Wolf*,1, Martina Göttingerová1, Jiří Kaplan2, Tomáš Kiss ORCID...1, Rostislav Venuta3, Tomáš Nečas ORCID...1
1 Department of Fruit Science, Faculty of Horticulture in Lednice, Mendel University in Brno, Brno, Czech Republic
2 Department of Genebank, Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy, Czech Republic
3 Fruit nursery Rostislav Venuta in Kadov, Kadov, Czech Republic

This study included twenty-three samples of minor fruit species and twenty-three plum cultivars. First of all, the pomological properties of the plum cultivars were assessed, where the cultivar 'Aphrodite' was determined as the cultivar with the biggest fruits (56.6 g). The selected nutritional properties were subsequently determined in all forty-six samples. The highest value of the total soluble solids in the plums was 27.3 % in 'Stanley' (Prunus domestica) and 26.1 % in 'Krasavica' (Sorbus aucuparia) in the minor fruits; the highest total content of ascorbic acid in the plums was 83.3 mg/100 g in 'Stanley' (P. domestica) and 622.9 mg/100 g in 'Krasavica' (S. aucuparia) in the minor fruits; the highest total phenolic content in the plums was 429.8 mg GAE/100 g in 'Fortune' (Prunus salicina) and 45.3 mg GAE/100 g in the minor fruits and 983.9 mg GAE/100 g in 'Vydubecký' (Cornus mas); the highest total flavonoid content in the plums was 291.5 mg CE/100 g in 'Fortune' (P. salicina) and 544.7 mg CE/100 g in 'Nero' (Sorbus melanocarpa) in the minor fruits, and the highest total antioxidant activity in the plums was 809.5 mg TE/100 g in the hybrid 'SLE2014/2' (P. domestica × P. salicina) and 849.8 mg TE/100 g in 'Amfora' (Lonicera edulis) in the minor fruits.

Keywords: vitamin C; antioxidant activity; Japanese plum; European plum; phenols

Published: December 31, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Wolf J, Göttingerová M, Kaplan J, Kiss T, Venuta R, Nečas T. Determination of the pomological and nutritional properties of selected plum cultivars and minor fruit species. Hort. Sci. (Prague). 2020;47(4):181-193. doi: 10.17221/18/2020-HORTSCI.
Download citation

References

  1. Blažek J. (2007): A survey of the genetic resources used in plum breeding. Acta Horticulturae (ISHS), 734: 31-45. Go to original source...
  2. Blažek J., Kneifl V. (2005): Pěstujeme slivoně. Prague, Brázda.
  3. Byrne D.H., Noratto G., Cisneros-Zevallos L., Porter W., Vizzotto M. (2009): Health benefits of peach, nectarine and plums. Acta Horticulturae (ISHS), 841: 267-274. Go to original source...
  4. Cao Y.F., Li S.L., Huang L.S. (2000): Review of researches on the germplasm resources of pear trees in China. China Fruits, 4: 42-44.
  5. Cevallos-Casals B.A., Byrne D., Okie W.R., Cisneros-Zevallos L. (2006): Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chemistry, 96: 273-280. Go to original source...
  6. Chun O.K., Kim D.O, Moon H.Y., Kang, H.G., Lee C.Y. (2003): Contribution of individual polyphenolics to total oxidant capacity of plums. Journal of Agricultural and Food Chemistry, 51: 7240-7245. Go to original source... Go to PubMed...
  7. Contessa C., Mellano M.G., Beccaro L.G., Giusiano A., Botta R. (2013): Total antioxidant capacity and total phenolic and anthocyanin contents in fruit species grown in Northwest Italy. Scientia Horticulturae, 160: 351-357. Go to original source...
  8. Crisosto C.H. (1994): Stone fruit maturity indices: A descriptive review. Postharvest News and Information, 5: 65-68.
  9. Crisosto C.H., Garner D., Crisosto G.M., Bowerman E. (2004): Increasing 'Blackamber' plum (Prunus salicina Lindl) consumer acceptance. Postharvest Biology and Technology, 34: 237-244. Go to original source...
  10. Crow J.F. (2001): Plant breeding giants: Burbank, the artist; Vavilov, the scientist. Genetics, 158: 1391-1395. Go to original source... Go to PubMed...
  11. Dimkova S., Ivanova D., Stefanova B., Marinova N., Todorova S. (2018): Chemical and technological characteristic of plum cultivars of Prunus domestica L. Bulgarian Journal of Agricultural Science, 24 (Suppl. 2): 43-47.
  12. Fanning K. J., Topp B., Russell R., Stanley R., Netzel M. (2014): Japanese plums (Prunus salicina Lindl.) and phytochemicals - breeding, horticultural practice, postharvest storage, processing and bioactivity. Journal of the Science of Food and Agriculture, 94: 2137-2147. Go to original source... Go to PubMed...
  13. Frankel E.N., Meyer A.S. (2000): The problems of using onedimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture, 80: 1925-1941. Go to original source...
  14. Gil M. I., Tomás-Barberán F.A., Hess-Pierce B., Kader A.A. (2002): Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. Journal of Agricultural and Food Chemistry, 50: 4976-4982. Go to original source... Go to PubMed...
  15. González-Flores D. et al. (2011): Ingestion of Japanese plums (Prunus salicina Lindl. cv. Crimson Globe) increases the urinary 6-sulfatoxymelatonin and total antioxidant capacity levels in young, middle-aged and elderly humans: Nutritional and functional characterization of their content. Journal of Food and Nutrition Research, 50: 229-236.
  16. Göttingerová M. (2018): Fruit processing of non-traditional fruit species of temperate zone. Mendel University in Brno. [Master thesis.] (in Czech)
  17. Hedrick U.P. (1911): The plums of New York. New York State Agricultural Experiment Station., New York (State). Department of Agriculture. 18th Annual Report. Albany, J.B. Lyon. Go to original source...
  18. Gómez A.H., He Y.,Pereira A.G. (2006): Non-destructive measurements of acidity, soluble solids and firmness of Satsuma mandarin using vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77: 313-319. Go to original source...
  19. Howard W.L. (1945): Luther Burbank's plant contributions. California Agricultural Experiment Station Bulletin: 691. Go to original source...
  20. Kalt W., Forney C.F., Martin A., Prior R.L. (1999): Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47: 4638-4644. Go to original source... Go to PubMed...
  21. Kampuss K., Kampuse S., Berna E., Krüma Z., Krasnova I., Drudze I. (2009): Biochemical composition and antiradical activity of rowanberry (Sorbus L.) cultivars and hybrids with different Rosacaea L. cultivars. Latvian Journal of Agronomy, 12: 59-65.
  22. Kim D.O, Jeong S.W., Lee C.Y. (2003): Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81: 321-326 Go to original source...
  23. Liu W. (2007): Plum production in China. Acta Horticulturae (ISHS), 734: 89-92. Go to original source...
  24. Liverani A., Giovannini D., Versari N., Sirri S., Brandi F. (2010): Japanese and European plum cultivar evaluation in the Po Valley of Italy: Yield and climate influence. Acta Horticulturae (ISHS), 874: 327-336. Go to original source...
  25. Milala J., Kosmala M., Sójka M., Kołodziejczyk K., Zbrzeźniak M., Markowski J. (2013): Plum pomaces as a potential source of dietary fibre: composition and antioxidant properties. Journal of Food and Technology, 50: 1012-1017. Go to original source... Go to PubMed...
  26. Marková R. (2001): Study of vegetative, growing and economic character of genus Lonicera subsect. caerulea Rehd. In: Proceedings from 9th International Conference of Horticulture, Lednice.
  27. Noratto G., Porter W., Byrne D., Cisneros-Zevallos L. (2009): Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. Journal of Agricultural and Food Chemistry, 57: 5219-5226. Go to original source... Go to PubMed...
  28. Noratto G., Martinob H.S.D., Simboc S., Byrned D., MertensTalcotte S.U. (2015): Consumption of polyphenol-rich peach and plum juice prevents risk factors for obesity-related metabolic disorders and cardiovascular disease in Zucker rats. Journal of Nutritional Biochemistry, 26: 633-641. Go to original source... Go to PubMed...
  29. Okie W.R., Weinberger J.H. (1996): Plums. In: Janick J., Moore J.N. (eds): Fruit Breeding, Volume I., Tree and Tropical Fruits, New York: Wiley: 559-608.
  30. Paz P., Sánchez M.T., Pérez-Marín D., Guerrero J.E., GarridoVaro A. (2008): Non-destructive determination of total soluble solid content and firmness in plums using near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, 56: 2565-2570. Go to original source... Go to PubMed...
  31. Pino J.A., Quijano C.E. (2012): Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Ciência e Tecnologia de Alimentos, Campinas, 32: 76-83. Go to original source...
  32. Pirkhezri M., Mogadam M., Ebadi E., Hassani D., Abdoosi V. (2014): Morpho-pomological study of some new Japanese plum (Prunus salicina Lindl) cultivars grown in Iran. International Journal of Biosciences, 5: 180-187. Go to original source...
  33. Prior R.L., Cao G. (2000): Antioxidant phytochemicals in fruits and vegetables: Diet and health implications. HortScience, 35: 588-592. Go to original source...
  34. Prior R.L. et al. (1998): Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry, 46: 2686-2693. Go to original source...
  35. Proteggente A.R. et al. (2002): The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin composition. Free Radical Research, 36: 217-233. Go to original source... Go to PubMed...
  36. Rehder A. (1986): Manual of cultivated trees and shrubs hardy in North America exclusive of the subtropical and warmer temperate regions. 2nd Ed. Portland, Oregon: Dioscoride Press.
  37. Sebastià N., Montoro A., Mañes J., Soriano J.S. (2012): A preliminary study of presence of resveratrol in skins and pulps of European and Japanese plum cultivars. Journal of the Science of Food and Agriculture, 92: 3091-3094. Go to original source... Go to PubMed...
  38. Siddiq M., Sultan M.T. (2012): Plums and prunes. In: Sinha N., Sidhu J., Barta J., Wu J., Cano M.P.: Handbook of Fruits and Fruit Processing, John Wiley Sons Ltd., Blackwell Publishing: 551-564. Go to original source...
  39. Stacewicz-Sapuntzakis M. (2013): Dried plums and their products: composition and health effects - an updated review. Critical Reviews in Food Science and Nutrition, 53: 1277-1302. Go to original source... Go to PubMed...
  40. Topp B.L., Russell D.M., Neumüller M., Dalbó M.A., Liu W. (2012): Plum. In: Badenes M.L., Byrne D.H. (eds): Fruit breeding, Handbook of Plant Breeding, New York: Springer, London: 571-622. Go to original source...
  41. Usenik U., Štampar F., Veberic, R. (2009): Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripening. Food Chemistry, 114: 529-534. Go to original source...
  42. Valero C., Crisosto C.H., Slaughter D. (2007): Relationship between non-destructive firmness measurements and commercially important ripening fruit stages for peaches, nectarines and plums. Postharvest Biology and Technology, 44: 248-253. Go to original source...
  43. Velioglu Y.S., Mazza G., Gao L., Oomah B.D. (1998): Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46: 4113-4117. Go to original source...
  44. Vizzotto M. (2005): Inhibition of invasive breast cancer cells by selected peach and plum antioxidants. [Ph.D. Dissertation.], Texas A&M University, College Station.
  45. Vizzotto M., Cisneros-Zevallos L., Okie W.R., Ramming D.W., Byrne D.H. (2007): Antioxidant activity and the content of phenolics and anthocyanins in peach and plum. Journal of the American Society for Horticultural Science, 132: 334-340. Go to original source...
  46. Vlaic R.A., Mureşan V., Mureşan A.E., Mureşan C.C., Păucean A., Mitre V., Chiş S.M., Muste S. (2018): the changes of polyphenols, flavonoids, anthocyanins and chlorophyll content in plum peels during growth phases: from fructification to ripening. Notulae Botanicae Horti Agrobotanici ClujNapoca, 46: 148-155. Go to original source...
  47. Wang H., Cao G., Prior R.L. (1996): Total antioxidant capacity of fruits. Journal of Agricultural and Food Chemistry, 44: 701-705. Go to original source...
  48. Wargovich M.J. (2000): Anticancer properties of fruits and vegetables. HortScience, 35: 573-575. Go to original source...
  49. Wolf J., Ondrášek I., Nečas T. (2019): Evaluation of pomological and qualitative traits in plum cultivars delivered from Prunus domestica, P. salicina, P. cerasifera and their hybrids. Acta Horticulturae (ISHS), 1260: 171-179. Go to original source...
  50. Wright K.P., Kader A.A. (1997): Effect of slicing and controlled-atmosphere storage on the ascorbate content and quality of strawberries and persimmons. Postharvest Biology and Technology, 10: 39-48. Go to original source...
  51. Zapata S., Dufour. J.F. (1992): Ascorbic, dehydroascorbic and isoascorbic acid simultaneous determinations by reverse phase ion interaction HPLC. Journal of Food Science, 57: 506-511. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.