Hort. Sci. (Prague), 2025, 52(3):261-271 | DOI: 10.17221/90/2024-HORTSCI

Comprehensive protection of tomato photosystem under cold stress by Streptomyces sp. TOR3209Original Paper

Jia Ma1, Jieli Peng1, Nan Jia1, Xu Wang1, Yuxi He1, Entao Wang1, Dong Hu1, Zhanwu Wang1
1 Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P.R. China
2 Department of Microbiology, National School of Biological Science, National Polytechnic Institute, Mexico City, México

The plant growth-promoting rhizobacterium Streptomyces sp. TOR3209 induces plant tolerance in a wide range of stress conditions. However, the protection of photosystem under cold stress has not been fully understood. Here we reported that the photochemistry activity of photosystem II (PSII) was increased in tomato plants receiving TOR3209 treatment, including the maximum quantum efficiency of PSII photochemistry (Fv/Fm), PSII operating efficiency (ΦPSII), PSII maximum efficiency (Fv’/Fm’), and non-photochemical quenching (NPQ). Microscopic study revealed that the integrity of chloroplast structure was greatly improved by TOR3209, which was damaged at low temperature. Moreover, TOR3209 treatment resulted in good protection on leaf stomatal and guard cell size. In response to TOR3209 treatment, the intercellular CO2 concentration (Ci) and stomatal limitation values (Ls) were decreased while the mesophyll conductance (gm) and chloroplast CO2 concentration (Cc) were increased. The carotenoid content in TOR3209-treated tomato was accumulated at a higher level, which was involved in photoprotection and biosynthesis of abscisic acid (ABA), as well as the increased amounts of ABA in the leaves were subsequently verified in the plants treated with TOR3209. These results demonstrated that TOR3209 treatment comprehensively protected tomato photosynthesis at low temperatures.

Keywords: chlorophyll a fluorescence; chloroplast ultrastructure; low temperature; photosystem II efficiency; Streptomyces

Received: May 9, 2024; Revised: January 29, 2025; Accepted: March 5, 2025; Prepublished online: September 10, 2025; Published: September 19, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Ma J, Peng J, Jia N, Wang X, He Y, Wang E, et al.. Comprehensive protection of tomato photosystem under cold stress by Streptomyces sp. TOR3209. Hort. Sci. (Prague). 2025;52(3):261-271. doi: 10.17221/90/2024-HORTSCI.
Download citation

References

  1. Abdel Latef A.A., He C.X. (2011): Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae, 127: 228-233. Go to original source...
  2. Abdel Latef A.A., He C.X. (2014): Does the inoculation with Glomus mosseae improve salt tolerance in pepper plants? Journal of Plant Growth Regulation, 33: 644-653. Go to original source...
  3. Alsadon A., Sadder M., Wahb-Allah M. (2013): Responsive gene screening and exploration of genotypes responses to salinity tolerance in tomato. Australian Journal of Crop Science, 7: 1383-1395.
  4. Baker N.R. (2008): Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59: 89-113. Go to original source... Go to PubMed...
  5. Bashan Y., Bustillos J.J., Leyva L.A., Hernandez J.P., Bacilio M. (2006): Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biology and Fertility of Soils, 42: 279-285. Go to original source...
  6. Bielczynski L.W., £acki M.K., Hoefnagels I., Gambin A., Croce R. (2017): Leaf and plant age affects photosynthetic performance and photoprotective capacity. Plant Physiology, 175: 1634-1648. Go to original source... Go to PubMed...
  7. Bhattacharyya P.N., Jha D.K. (2012): Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal Of Microbiology and Biotechnology, 28: 1327-1350. Go to original source... Go to PubMed...
  8. Busch F.A. (2014): Opinion: The red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain. Photosynthesis Research, 119: 131-140. Go to original source... Go to PubMed...
  9. Chandrasekaran M., Chanratana M., Kim K., Seshadri S., Sa T. (2019): Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress - A meta-analysis. Frontiers in Plant Science, 10: 457. Go to original source... Go to PubMed...
  10. Cohen A.C., Bottini R., Piccoli P. (2008): Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regulation, 54: 97-103. Go to original source...
  11. de Andrade S.A.L, Domingues Jr. A.P., Mazzafera P. (2015): Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress. Chemosphere, 134: 41-149. Go to original source... Go to PubMed...
  12. Dong H.L., Deng Y., Mu J., Lu Q.T., Wang Y.Q., Xu Y.Y., Chu C.C., Chong K., Lu C.M., Zuo J.R. (2007): The Arabidopsis Spontaneous Cell Death1 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Research, 17: 458-470. Go to original source...
  13. Dong Z.F., Men Y.H., Li Z.M., Zou Q.Y., Ji J.W. (2019): Chlorophyll fluorescence imaging as a tool for analyzing the effects of chilling injury on tomato seedlings. Scientia Horticulturae, 246: 490-497. Go to original source...
  14. Elhindi K.M., El-Din A.S., Elgorban A.M. (2017): The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi Journal of Biological Sciences, 24: 170-179. Go to original source... Go to PubMed...
  15. Glowacka K., Kromdijk J., Kucera K., Xie J., Cavanagh A.P., Leonelli L., Leakey A.D.B., Ort D.R., Niyogi K.K., Long S.P. (2018): Photosystem II Subunit S over-expression increases the efficiency of water use in a field-grown crop. Nature Communications, 9: 868. Go to original source... Go to PubMed...
  16. Han N.N., Fan S.Y., Zhang T.T., Sun H., Zhu Y.X., Gong H.J., Guo J. (2020): SlHY5 is a necessary regulator of the cold acclimation response in tomato. Plant Growth Regulation, 91: 1-12. Go to original source...
  17. Hajiboland R., Aliasgharzadeh N., Laiegh S.F., Poschenreider C. (2010): Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil, 331: 313-327. Go to original source...
  18. Hu D., Li S.H., Li Y., Peng J.L., Wei X.Y., Ma J., Zhang C.M., Jia N., Wang E.T., Wang Z.W. (2020): Streptomyces sp. strain TOR3209: A rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community. Scientific Reports, 10: 20132. Go to original source... Go to PubMed...
  19. Hu D., Li X., Chang Y., He H., Zhang C.M., Jia N., Li H.T., Wang Z.W. (2012): Genome sequence of Streptomyces sp. strain TOR3209, a rhizosphere microecology regulator isolated from tomato rhizosphere. Journal of Bacteriology, 194: 1627. Go to original source... Go to PubMed...
  20. Hugh L.M., Todd M.K., Tracy A., Richard J.G. (2002): Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. Journal of Phycology, 38: 17-38. Go to original source...
  21. Liu D., Wang X., Lin Y., Chen Z., Xu H., Wang L. (2012): The effects of cerium on the growth and some antioxidant metabolisms in rice seedlings. Environmental Science and Pollution Research, 19: 3282-3291. Go to original source... Go to PubMed...
  22. Liu G.Y., Du Q.J., Li J.M. (2017): Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings. Scientia Horticulturae, 214: 41-40. Go to original source...
  23. Liu Y.F., Zhang G.X., Qi M.F., Li T.L. (2015): Effects of calcium on photosynthesis, antioxidant system, and chloroplast ultrastructure in tomato leaves under low night temperature stress. Journal of Plant Growth Regulation, 34: 263-273. Go to original source...
  24. Ma J., Peng J.L., Tian S., He Y.X., Zhang C.M., Jia N., Wang E.T., Wang Z.W., Hu D. (2023): Streptomyces sp. TOR3209 alleviates cold stress in tomato plants. New Zealand Journal of Crop and Horticultural Science, 51: 662-682. Go to original source...
  25. Major I.T., Nicole M.C., Duplessis S., Séguin A. (2010): Photosynthetic and respiratory changes in leaves of poplar elicited by rust infection. Photosynthesis Research, 104: 41-48. Go to original source... Go to PubMed...
  26. Moustakas M., Bayçu G., Sperdouli I., Eroğlu H., Eleftheriou E.P. (2020): Arbuscular Mycorrhizal symbiosis enhances photosynthesis in the medicinal herb Salvia fruticose by improving photosystem II photochemistry. Plants, 9: 962. Go to original source... Go to PubMed...
  27. Ré M.D., Gonzalez C., Escobar M.R., Sossi M.L., Valle E.M., Boggio S.B. (2017): Small heat shock proteins and the postharvest chilling tolerance of tomato fruit. Physiologia Plantarum, 159: 148-160. Go to original source... Go to PubMed...
  28. Ritonga F.N., Chen S. (2020): Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants, 9: 560. Go to original source... Go to PubMed...
  29. Sharkey T.D., Zhang R. (2010): High temperature effects on electron and proton circuits of photosynthesis. Journal of Integrative Plant Biology, 52: 712-722. Go to original source... Go to PubMed...
  30. Sun Y.F., Chen P., Duan C.R., Tao P., Wang Y.P., Kai J., Hu Y., Li Q., Dai S.J., Wu Y., Luo H., Sun L., Leng P. (2013): Transcriptional regulation of genes encoding key enzymes of abscisic acid metabolism during melon (Cucumis melo L.) fruit development and ripening. Journal of Plant Growth Regulation, 32: 233-244. Go to original source...
  31. Sveshnikov D., Ensminger I., Ivanov A.G., Campbell D., Lloyd J., Funk C., Hüner N.P.A., Öquist G. (2006): Excitation energy partitioning and quenching during cold acclimation in Scots pine. Tree Physiology, 26: 325-336. Go to original source... Go to PubMed...
  32. Theocharis A., Bordiec S., Fernandez O., Paquis S., Dhondt-Cordelier S., Baillieul F., Clément C., Barka E.A. (2012): Burkholderia phytofirmans PsJN Primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Molecular Plant-Microbe Interactions, 25: 241-249. Go to original source... Go to PubMed...
  33. Wang F., Guo Z., Li H., Wang M., Onac E., Zhou J., Xia X., Shi K., Yu J., Zhou Y. (2016a): Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiology, 170: 459-471. Go to original source... Go to PubMed...
  34. Wang F.B., Liu J.C., Chen M.X., Zhou L.J., Li Z.W., Zhao Q., Pan G., Zaidi S.H.R., Cheng F.M. (2016b): Involvement of abscisic acid in PSII photodamage and D1 protein turnover for light-induced premature senescence of rice flag leaves. PLoS One, 11: e0161203. Go to original source... Go to PubMed...
  35. Wellburn A.R., Lichtenthaler H. (1984): Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In: Sybesma C. (ed.): Advances in Photosynthesis Research. Advances in Agricultural Biotechnology. Dordrecht, Springer: 9-12. Go to original source...
  36. Weng J.H., Chen C.T., Chen C.W., Lai X.M. (2011): Effects of osmotic- and high-light stresses on PSII efficiency of attached and detached leaves of three tree species adapted to different water regimes. Photosynthetica, 49: 555-563. Go to original source...
  37. Weston D.J., Pelletier D.A., Morrell-Falvey J.L., Tschaplinski T.J., Jawdy S.S., Lu T.Y., Allen S.M., Melton S.J., Martin M.Z., Schadt C.W., Karve A.A., Chen J.G., Yang X.H., Doktycz M.J., Tuskan G.A. (2012): Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism, photosynthesis, and fitness. Molecular Plant-Microbe Interactions, 25: 765-778. Go to original source... Go to PubMed...
  38. Wu Q.S., Zou Y.N. (2010): Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Scientia Horticulturae, 125: 289-293. Go to original source...
  39. Xu Z., Zhou G. (2008): Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany, 59: 3317-3325. Go to original source... Go to PubMed...
  40. Yang H.S., Xu J., Guo Y., Koide R.T., Dai Y., Xu M.M., Bian L.P., Bian X.M., Zhang Q. (2016): Predicting plant response to arbuscular mycorrhizas: The role of host functional traits. Fungal Ecology, 20: 79-83. Go to original source...
  41. Zhang N., Zhao H.Y., Shi J.W., Wu Y.Y., Jiang J. (2020): Functional characterization of class I SlHSP17.7 gene responsible for tomato cold-stress tolerance. Plant Science, 298: 110568. Go to original source... Go to PubMed...
  42. Zhang T., Shen Z.G., Xu P., Zhu J.Y., Lu Q.Q., Shen Y., Wang Y., Yao C.Y., Li J.F., Wang Y.X., Jiang H.X. (2012): Analysis of photosynthetic pigments and chlorophyll fluorescence characteristics of different strains of Porphyra yezoensis. Journal of Applied Phycology, 24: 881-886. Go to original source...
  43. Zhang X., Wollenweber B., Jiang D., Liu F.L., Zhao J. (2008): Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. Journal of Experimental Botany, 59: 839-848. Go to original source... Go to PubMed...
  44. Zhang Y., Zhang H., Sun X., Wang L., Du N., Tao Y., Sun G.Q., Erinle K.O., Wang P.J., Zhou C.J., Duan S.W. (2016): Effect of dimethyl phthalate (DMP) on germination, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. Environmental Science and Pollution Research, 23: 1183-1192. Go to original source... Go to PubMed...
  45. Zhu C.X., Song B.F., Xu W.H. (2010): Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant and Soil, 331: 129-137. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.