Hort. Sci. (Prague), 2025, 52(3):237-249 | DOI: 10.17221/96/2024-HORTSCI

Inter-specific cucurbitaceous rootstock enhances plant growth, photosynthetic, root architecture and yield traits in grafted cucumber (Cucumis sativus L.)Original Paper

Anant Bahadur1, Anish Kumar Singh1, Sapana Yadav1, Rajeev Kumar1, Hare Krishna1, Tusar Kanti Behera2
1 Division of Vegetable Production, Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, India
2 Indian Council of Agricultural Research-Indian Institute of Vegetable Research, Varanasi, India

In recent years, grafting has emerged as an efficient and alternative tool to the relatively slow conventional breeding methods, aiming to increase tolerance to abiotic stresses and soil pathogens while improving yield and quality attributes in fruit vegetables. In the present investigation, six inter-specific cucurbitaceous rootstocks, viz. sponge gourd (SG), ridge gourd (RG), ash gourd (AG), bottle gourd (BG), and Summerfit (SF), an inter-specific hybrid of snap melon × acidulus melon, were evaluated for cucumber (C) cv. ‘Kashi Nutan’. Experimental findings revealed that cucumber grafted onto inter-specific SF exhibited a 14.63%, 57.5%, and 20.05% increase in vine length, number of branches, and dry matter production, respectively, compared to the self-rooted control. Photosynthetic parameters such as photosynthetic rate (Pn), stomatal conductance (gs), and maximum quantum efficiency of photosystem II (PS II) (Fv/Fm) were also higher in cucumber leaves grafted onto the SF rootstock. Compared to self-rooted plants, cucumber grafted onto SF recorded 72.3% more fruits, a 36.9% increase in fruit weight, and an 80.9% higher fruit yield. The SF rootstock also showed a 44.54% increase in total root length (TRL), a 77.11% increase in root volume, and a 27.25% increase in average root diameter over self-rooted cucumber.

Keywords: cucumber grafting; graft combinations; inter-specific cucurbit rootstocks; net photosynthesis rate; root architecture

Received: May 16, 2024; Revised: March 18, 2025; Accepted: March 26, 2025; Prepublished online: September 10, 2025; Published: September 19, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bahadur A, Kumar Singh A, Yadav S, Kumar R, Krishna H, Behera TK. Inter-specific cucurbitaceous rootstock enhances plant growth, photosynthetic, root architecture and yield traits in grafted cucumber (Cucumis sativus L.). Hort. Sci. (Prague). 2025;52(3):237-249. doi: 10.17221/96/2024-HORTSCI.
Download citation

References

  1. Alan Ö., Özdemİr N., Günen Y. (2007): Effect of grafting on watermelon plant growth, yield and quality. Journal of Agronomy, 6: 362-364. Go to original source...
  2. Al-Harbi A.R., Al-Omran A.M., Alharbi K. (2018): Grafting improves cucumber water stress tolerance in Saudi Arabia. Saudi Journal of Biological Science, 25: 298-304. Go to original source... Go to PubMed...
  3. Amaro A.C.E., Macedo A.C., Ramos A.R.P., Goto R., Ono E.O., Rodrigues J.D. (2014): The use of grafting to improve the net photosynthesis of cucumber. Theoretical and Experimental Plant Physiology, 26: 241-249. Go to original source...
  4. Anand K., Bhardwaj A., Kumar R., Pal A.K., Chattopadhyay T., Padbhushan R., Singh P. (2021): Grafting parthenocarpic cucumber for yield and quality. Vegetable Science, 48: 172-177. Go to original source...
  5. Aslam W., Noor R.S., Hussain F., Ameen M., Ullah S., Chen H. (2020): Evaluating morphological growth, yield, and postharvest fruit quality of cucumber (Cucumis sativus L.) grafted on cucurbitaceous rootstocks. Agriculture, 10: 101. Go to original source...
  6. Aziz M.M., Palta J.A., Siddique K.H., Sadras V.O. (2017): Five decades of selection for yield reduced root length density and increased nitrogen uptake per unit root length in Australian wheat varieties. Plant and Soil, 413: 181-192. Go to original source...
  7. Bahadur A., Jangid K.K., Singh A.K., Singh U., Rai K.K., Singh M.K., Singh B. (2016): Tomato genotypes grafted on eggplant: Physiological and biochemical tolerance under waterlogged condition. Vegetable Science, 43: 208-215.
  8. Bahadur A., Rai N., Kumar R., Tiwari S.K., Singh A.K., Rai A.K., Singh B. (2015): Grafting tomato on eggplant as a potential tool to improve waterlogging tolerance in hybrid tomato. Vegetable Science, 42: 82-87.
  9. Bertucci M.B., Suchoff D.H., Jennings K.M., Monks D.W., Gunter C.C., Schultheis J.R., Louws F.J. (2018): Comparison of root system morphology of cucurbit rootstocks for use in watermelon grafting. HortTechnology, 28: 629-636. Go to original source...
  10. Bhatt R.M., Upreti K.K., Divya M.H., Bhat S., Pavithra C.B., Sadashiva A.T. (2015): Interspecific grafting to enhance physiological resilience to flooding stress in tomato (Solanum lycopersicum L.). Scientia Horticulturae, 182: 8-17. Go to original source...
  11. Bikdeloo M., Colla G., Rouphael Y., Hassandokht M.R., Soltani F., Salehi R., Cardarelli M. (2021): Morphological and physio-biochemical responses of watermelon grafted onto rootstocks of wild watermelon [Citrullus colocynthis (L.) Schrad] and commercial interspecific cucurbita hybrid to drought stress. Horticulturae, 7: 359. Go to original source...
  12. Cansev A., Ozgur M. (2010): Grafting cucumber seedlings on Cucurbita spp.: Comparison of different grafting methods, scions and their performance. Journal of Food, Agriculture & Environment, 8: 804-809.
  13. Cantero-Navarro E., Romero-Aranda R., Fernández-Muñoz R., Martínez-Andújar C., Pérez-Alfocea F., Albacete A. (2016): Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass. Plant Science, 251: 90-100. Go to original source... Go to PubMed...
  14. Chawda V. (2021): Development of suitable rootstock and standardization of appropriate grafting technology for dry and humid areas of India. Acta Horticulturae (ISHS), 1302: 45-48. Go to original source...
  15. Colla G., Rouphael Y., Rea E., Cardarelli M. (2012): Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Scientia Horticulturae, 135: 177-185. Go to original source...
  16. Comas L., Becker S., Cruz V.M.V., Byrne P.F., Dierig D.A. (2013): Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4: 62325. Go to original source... Go to PubMed...
  17. Dong L.-L., Zuo Y.-M., Li X.-L., Wang Q. (2010): Effects of grafting on cucumber soil biochemistry. Journal of China Agricultural University, 15: 51-56.
  18. Gálvez A., Albacete A., Martínez-Andújar C., del Amor F.M., López-Marín J. (2021): Contrasting rootstock-mediated growth and yield responses in salinized pepper plants (Capsicum annuum L.) are associated with changes in the hormonal balance. International Journal of Molecular Sciences, 22: 3297. Go to original source... Go to PubMed...
  19. Goto R., de Miguel A., Marsal J.I., Gorbe E., Calatayud A. (2013): Effect of different rootstocks on growth, chlorophyll fluorescence and mineral composition of two grafted scions of tomato. Journal of Plant Nutrition 36: 825-835. Go to original source...
  20. Guan W., Egel D.S., Sutterer L.D., Plummer A.D. (2018): Early-season production of grafted seedless cucumbers in high tunnels. HortTechnology, 28: 74-79. Go to original source...
  21. He Y., Zhu Z., Yang J., Ni X., Zhu B. (2009): Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66: 270-278. Go to original source...
  22. Hill J.O., Simpson R.J., Moore A.D., Chapman D.F. (2006): Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant and Soil, 286: 7-19. Go to original source...
  23. Ho M.D., Rosas J.C., Brown K.M., Lynch J.P. (2005): Root architectural trade-offs for water and phosphorus acquisition. Functional Plant Biology, 32: 737-748. Go to original source... Go to PubMed...
  24. Huang Y., Li J., Hua B., Liu Z., Fan M., Bie Z. (2013): Grafting onto different rootstocks as a means to improve watermelon tolerance to low potassium stress. Scientia Horticulturae, 149: 80-85. Go to original source...
  25. Kappel N., Palla B., Challa L., Mozafarian M. (2024): Rootstock and scion anatomical parameters in grafted eggplant seedlings, infuencing growth and fruit production. BMC Plant Biology 24: 1207. Go to original source... Go to PubMed...
  26. Khah E.M., Kakava E., Mavromatis A., Chachalis D., Goulas C. (2006): Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open-field. Journal of Applied Horticulture, 8: 3-7. Go to original source...
  27. Kyriacou M.C., Rouphael Y., Colla G., Zrenner R., Schwarz D. (2017): Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science, 8: 264809. Go to original source... Go to PubMed...
  28. Lawson T., Matthews J. (2020): Guard cell metabolism and stomatal function. Annual Review of Plant Biology, 71: 273-302. Go to original source... Go to PubMed...
  29. Lee J.M., Oda M. (2003): Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, 28: 61-124. Go to original source...
  30. Lee J.M., Kubota C., Tsao S.J., Bie Z., Echevarria P.H., Morra L., Oda M. (2010): Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127: 93-105. Go to original source...
  31. Li Y., Tian X., Wei M., Shi Q., Yang F., Wang X. (2015): Mechanisms of tolerance differences in cucumber seedlings grafted on rootstocks with different tolerance to low temperature and weak light stresses. Turkish Journal of Botany, 39: 606-614. Go to original source...
  32. Liu Y.F., Qi H.Y., Bai C.M., Qi M.F., Xu C.Q., Hao J.H., Li T.L. (2011): Grafting helps improve photosynthesis and carbohydrate metabolism in leaves of muskmelon. International Journal of Biological Sciences, 7: 1161. Go to original source... Go to PubMed...
  33. Ma Q., Niu C., Wang C., Chen C., Li Y., Wei M. (2023): Effects of differentially expressed microRNAs induced by rootstocks and silicon on improving chilling tolerance of cucumber seedlings (Cucumis sativus L.). BMC Genomics, 24: 250. Go to original source... Go to PubMed...
  34. Ma S.C., Li F.M., Xu B.C., Huang Z.B. (2010): Effect of lowering the root/shoot ratio by pruning roots on water use efficiency and grain yield of winter wheat. Field Crops Research, 115: 158-164. Go to original source...
  35. Martínez-Ballesta M.C., Alcaraz-López C., Muries B., Mota-Cadenas C., Carvajal M. (2010): Physiological aspects of rootstock-scion interactions. Scientia Horticulturae, 127: 112-118. Go to original source...
  36. Noor R.S., Wang Z., Umair M., Yaseen M., Ameen M., Rehman S.U., Sun Y. (2019): Interactive effects of grafting techniques and scion-rootstocks combinations on vegetative growth, yield and quality of cucumber (Cucumis sativus L.). Agronomy, 9: 288. Go to original source...
  37. Passioura J.B. (1983): Roots and drought resistance. Developments in Agricultural and Managed Forest Ecology, 12: 265-280. Go to original source...
  38. Penella C., Landi M., Guidi L., Nebauer S.G., Pellegrini E., San Bautista A., Calatayud A. (2016): Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology, 193: 1-11. Go to original source... Go to PubMed...
  39. Penella C., Nebauer S.G., Quinones A., San Bautista A., López-Galarza S., Calatayud A. (2015): Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science, 230: 12-22. Go to original source... Go to PubMed...
  40. Pradhan S.R., Sahu G.S., Tripathy P., Dash S.K., Mishra B., Jena R., Sahoo T.R. (2017): Vegetable grafting: A multi-dimensional approach for crop management in vegetables. International Journal of Current Microbiology and Applied Sciences, 6: 3332-3345. Go to original source...
  41. Riga P., Benedicto L., García-Flores L., Villaño D., Medina S., Gil-Izquierdo Á. (2016): Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. Journal of Food Composition and Analysis, 46: 50-59. Go to original source...
  42. Rouphael Y., Kyriacou M.C., Colla G. (2018): Vegetable grafting: A toolbox for securing yield stability under multiple stress conditions. Frontiers in Plant Science 8: 2255. Go to original source... Go to PubMed...
  43. Rouphael Y., Schwarz D., Krumbein A., Colla G. (2010): Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127: 172-179. Go to original source...
  44. Salam M.A., Masum A.S.M.H., Chowdhury S.S., Dhar M., Saddeque M.A, Islam M.R. (2002): Growth and yield of watermelon as influenced by grafting. Journal of Biological Sciences, 2: 298-299. Go to original source...
  45. Salehi R., Kashi A., Lee J.M., Babalar M., Delshad M., Lee S.G., Huh Y.C. (2010): Leaf gas exchanges and mineral ion composition in xylem sap of Iranian melon affected by rootstocks and training methods. HortScience, 45: 766-770. Go to original source...
  46. Schwarz D., Rouphael Y., Colla G., Venema J.H. (2010): Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127: 162-171. Go to original source...
  47. Tamilselvi N.A., Pugalendhi L. (2018): Role of cucurbitaceous rootstocks on vegetative growth, fruit yield and quality of bitter gourd (Momordica charantia L.) scions through grafting. Journal of Animal and Plant Sciences, 28: 811-818.
  48. Wahb-Allah M.A. (2014): Effectiveness of grafting for the improvement of salinity and drought tolerance in tomato (Solanum lycopersicon L.). Asian Journal of Crop Science, 6: 112-122. Go to original source...
  49. Yetisir H., Sari N. (2003): Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 43: 1269-1274. Go to original source...
  50. Zhang X., Liang X., Zhang Z., Tong E., Gao L. (2014): Influence of grafting on cucumber growth and nutrient absorption under water-deficient condition. Journal of China Agricultural University, 19: 137-144.
  51. Zhong Y.Q., Bie Z.L. (2006): Effects of grafting on the growth and quality of cucumber fruits. Acta Horticulturae (ISHS), 761: 341-347. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.