https://doi.org/10.17221/144/2017-HORTSCI

Stomatal anatomy and closing ability is affected by supplementary light intensity in rose (Rosa hybrida L.)

Dimitrios Fanourakis^{1,†}, Benita Hyldgaard^{2,†}, Habtamu Giday^{2,3}, Isaac Aulik², Dimitris Bouranis⁴, Oliver Körner⁵, Carl-Otto Ottosen^{2*}

Agricultural University of Athens, Athens, Greece

Supplementary Online Material

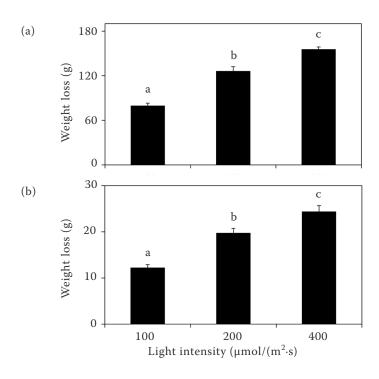


Fig. S1. Day-time (a) and night-time (b) plant transpiration rate of *Rosa hybrida* cv grown at different light intensities. Measurements were conducted in the growth environment and using fully grown intact plants (at least two flower buds with cylindrical shape and pointed tip) (n = 6). Error bars indicate SEM. The difference in the *y*-axis scale should be noted. Please consider that the assessed plants had considerable differences in leaf area (Table 1). Plant transpiration per leaf area basis is provided in Fig. 2

¹Giannakakis SA, Export Fruits and Vegetables, Tympaki, Greece

²Department of Food Science, Faculty of Science and Technology, Aarhus University, Årslev, Denmark

³Horticulture and Product Physiology Group, Wageningen University, Wageningen, Netherlands

⁴Plant Physiology and Morphology Laboratory, Crop Science Department,

⁵Department of Plant Technology, AgroTech, Danish Technological Institute Taastrup, Denmark

^{*}Corresponding author: coo@food.au.dk