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Abstract: Gerbera flowers are the best-selling cut flowers worldwide owing to their attractive appearance. Nev-
ertheless, one significant challenge for gerbera flowers is their relatively short vase life. Commercially, synthetic 
chemicals are used to prolong the vase life of flowers; however, they are not environmentally friendly, posing 
sustainability concerns. Therefore, we used different concentrations of the biocontrol spore suspension of Strep-
tomyces exfoliatus FT05W and evaluated their effect on vase life, bacterial population, and different morphology 
and physiological indices of gerbera cut flowers, with the objective of determining the optimal concentration for 
maximum efficiency. The results revealed that all spore suspensions of S. exfoliatus FT05W (1 × 106 CFU mL) 
significantly extended vase life and were 4 days longer than the control. S. exfoliatus FT05W treatment also 
increased bottle life extension days, blossom diameter, and fresh weight, and maintained water balance. In addition, 
it decreased malondialdehyde (MDA) levels and relative electrolyte leakage (REL), leading to decreased oxidative 
stress. S. exfoliatus FT05W significantly increased antioxidant enzymes, including superoxide dismutase (SOD) 
activity, catalase (CAT) activity, peroxidase (POD) activity, soluble sugar (SS), and soluble protein (SP), compared 
to the control. Furthermore, it can effectively inhibit bacterial proliferation, resulting in a decline in colonies and 
a significant delay in the flower ageing process. The beneficial impacts of S. exfoliatus FT05W were most pro-
nounced at a concentration of 1 × 106 CFU/mL. The findings of this research suggest that S. exfoliatus FT05W 
has great potential as a bio-fertiliser for cut flowers, as it is capable of addressing the challenges associated with 
flower cultivation.
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Gerbera jamesonii L. is  a  perennial herbaceous 
plant belonging to  the Asteraceae family, known 
for its large, vibrant flowers, striking colours, and 
popularity in  the cut-flower industry, and has 
earned it a place among the world’s top ten cut flow-
ers (Gantait et al. 2011; Li et al. 2019). With ample 
flower size and a heavy head, gerbera is susceptible 
to  microbial infections, ethylene production, and 
physiological changes, which can cause early flower-
ing, stem bending, and petal loss, leading to a  sig-
nificant decline in  its aesthetic appeal (Perik et  al. 
2012; Perik et al. 2014).

Gerbera, which is prone to early wilting and a bent 
neck, frequently experiences a  decline in  vase life 
due to reduced water uptake in cut flowers. This can 
be attributed to various factors, such as physiological 
or stem blockage caused by microbial growth within 
the vascular bundle, resulting in the formation of air 
bubbles (Mohammadi et al. 2020). Cut flowers can 
experience a negative water balance due to obstruc-
tion of xylem vessels, which can be caused by chang-
es in water uptake and surface evaporation. Vascular 
bundle occlusion can occur in various ways, includ-
ing through the proliferation of pathogenic bacteria 
and other microorganisms. However, it is important 
to note that the types of bacteria found at the stem 
ends can differ among flower species (Balestra et al. 
2005). Some bacteria possess the capability to  se-
crete extracellular virulence factors, including pectic 
enzymes and harmful substances that generate eth-
ylene or other hormones. These factors are respon-
sible for causing damage to the structure of flower 
scapes and accelerating their senescence. However, 
there are bacteria that may have a beneficial impact 
on the longevity of flowers or have no apparent ef-
fect (Naing, Kim 2020).

Li et al. (2012) found that four predominant bacte-
rial species in the stem ends of cut roses significantly 
impacted their vase life and water-absorbing ability. 
Specifically, when the initial concentration of  these 
bacteria in  the vase solution reached 108  colony-
forming units per mL (8  log10  CFU/mL), the vase 
life of  the roses was greatly reduced, and their wa-
ter uptake was diminished. Naing et al. (2017) also 
demonstrated that adding 107  CFU/mL of  Entero-
bacter cloacae to the vase solution extended the vase 
life of  cut ‘Omega’ carnations by  3  days compared 
to the control group. The influence of bacteria pre-
sent in the stem ends and vase water on the vase life 
of  cut gerbera flowers remains unclear. According 
to Schouten et al. (2018), the effect of bacteria on cut 

gerbera flowers varies depending on  the specific 
bacterial genotype. Therefore, it is essential to study 
individual bacterial strains in vase water to improve 
our understanding of their role in reducing the vase 
life of gerbera flowers.

Cut flowers are often dipped in  vase solutions 
to  maintain their quality and extend their vase 
life. These solutions were formulated to  prevent 
the spread of pathogenic microorganisms within the 
vascular bundles (Acharyya et al. 2013).

Many studies have explored methods for preserving 
cut gerbera flowers, primarily focusing on using plant 
growth regulators, such as  gibberellic acid  (GA3), 
benzyl adenine (BA), and salicylic acid (SA) (Danaee 
et  al. 2011; Mehdikhah et  al. 2016; Shabanian et  al. 
2019). Additionally, chemicals such as  chlorproma-
zine (Karras et al. 2007), silver thiosulfate (STS), silver 
nanoparticles, and AgNO3, have been investigated 
(Geshnizjany et al. 2014; Rahman et al. 2019). How-
ever, the use of these chemicals poses risks to human 
health and contributes to  environmental pollution 
(Serrano et al. 2001; McGillicuddy et al. 2017; Wang 
et al. 2017). Nonetheless, there is a paucity of research 
concerning biopreservation effects on  gerbera-cut 
flowers. Biopreservatives, however, are derived di-
rectly from biological metabolites or  their compo-
nents and possess characteristics such as  tasteless-
ness, non-toxicity, and biodegradability, eliminating 
the risk of secondary pollution.

S. exfoliatus FT05W is a Streptomyces sp. isolated 
from plant roots. Previous studies have shown that 
S.  exfoliatus FT05W is  an  effective biological con-
trol agent against S.  sclerotiorum in  lettuce (Chen 
et  al. 2016). Under greenhouse conditions, it  can 
improve the stress tolerance of horticultural plants, 
such as  lettuce and tomato, promote their growth, 
and promote the germination of tobacco and vegeta-
ble seeds (Chaurasia et  al. 2018). Furthermore, the 
secondary metabolites and bacteriostatic substances 
produced by  S.  exfoliatus FT05W, including chi-
tinase, are highly effective in controlling fungal dis-
eases and promoting plant growth (Chen et al. 2019).

Therefore, we hypothesised that inoculation with 
S.  exfoliatus FT05W at  different concentrations 
would improve the growth and durability of  ger-
beras, although different concentrations might have 
different effects. The main objectives of  this study 
were (i)  to evaluate the effects of different concen-
trations of spore suspensions on the growth and vase 
life of gerbera cut flowers, (ii) the effect of bacterial 
spore suspension on  the antioxidant system, lipid 
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peroxidation, and electrolyte leakage, (iii) to deter-
mine the effect of bacterial spore suspension on bac-
terial population.

MATERIAL AND METHODS

Test materials. The plant material was G. jamesonii 
Bolus, which is  red in colour. S.  exfoliatus FT05W 
was originally received from Prof. Marco Saracchi 
and Prof. Paola Sardi (Plant Pathology Lab, Depart-
ment of  Food, Environmental and Nutritional Sci-
ences, University of Milan, directed by Prof. Paolo 
Cortesi). Previous studies have shown it can prevent 
and control Sclerotinia sclerotiorum (Chen et  al. 
2016). It exhibits strong inhibitory effects on various 
pathogenic fungi. In  addition, the strain produces 
beneficial secondary metabolites and bacteriostatic 
substances, making it an effective agent against fun-
gal diseases and a potent bacterium that promotes 
plant growth (Chen et al. 2019).

Culture method of Streptomyces sp. Streptomyces 
culture was performed using Czapek-Dox Medium, 
consisting of 0.1% K2HPO4 (w/v), 0.05% KCl  (w/v), 
0.3% NaNO3 (w/v), 0.05%  MgSO4  (w/v), 
0.001%  FeSO4 (w/v), 1.5% agar (w/v), and 3%  su-
crose (w/v). Sterilisation was performed at  121  °C 
for 20 minutes. After sterilisation, the mixture was 
cooled on a clean workbench. When it had cooled 
sufficiently, the medium was poured into a  steril-
ised 90 mm culture dish, ensuring that aseptic pro-
cedures were strictly followed: 15  mL was poured 
into each culture dish, and the medium was gently 
shaken until it was evenly distributed at the bottom 
of the culture dish. Allow it to cool before use. Once 
the medium was completely cooled, Streptomyces 
from the mother plate of the strain was inoculated 
onto the medium in a wavy pattern using a streak-
ing technique. Finally, after completing the inocu-
lation, the plates were labelled with the date and 
strain number, sealed with sealing film, and placed 
in a constant-temperature incubator (HFP-80, Qin-
gdao Haier Biomedical Co., Ltd., China) set between 
24 °C and 28 °C for 7 days.

Preparation of Streptomyces spore suspension. 
The cultured Streptomyces were removed from the 
incubator, and the spores were gently detached from 
the surface of each plate with sterile water on an ul-
tra-clean table. They were then filtered into a steril-
ised conical bottle using a sterilised funnel and four 
layers of gauze (pore size 20 μm) for use. After the 

preparation of the mother liquor, 1 mL of the moth-
er liquor was absorbed and diluted using the equal 
dilution method. Next, 0.1 mL of spore suspension 
was added to the Streptomyces culture medium. The 
suspension was equally distributed by smearing with 
an  inoculation ring and subsequently sealed. Incu-
bate at 24–28 °C in a constant temperature and light 
incubator for a  week, and the number of  colonies 
was counted to  calculate the mother liquor con-
centration. After determining the concentration, 
the mother liquor was diluted with sterile water ac-
cording to treatment requirements and transferred 
to a sterilised centrifuge tube for later use.

 Treatment of  G. jamesonii  L. fresh-keeping 
test. We used sucrose (20 g/L sucrose) and calcium 
nitrate (10 g/L sodium nitrate) as the basic preserva-
tion solution components. We then tested different 
concentrations of S. exfoliatus FT05W spore suspen-
sions. The arrangement of  bottles was determined 
according to the treatment plan outlined in Table 1.

The experiment was conducted at  the Horticul-
tural Laboratory of Guizhou University. We selected 
fresh flowers and branches that had bloomed for the 
first time, showed even growth, and were free of dis-
eases or pests. After collecting flower samples, they 
were placed in clean water. Each stem was cut diago-
nally at an angle of 45 degrees underwater, ensuring 
that each stem cut was approximately 30 cm from 
the diagonal cut to  the flower tip. They were then 
placed in triangular bottles containing 300 mL of the 
treatment solution, with three stems per bottle. This 
process was repeated thrice for each treatment. 
To  minimise evaporation, each bottle was sealed 
with absorbent cotton. These bottles were stored 

Table 1. Treatment of G. jamesonii L. fresh-keeping test

Treatment Treatment detail

CK (control) basic preservation solution 
+ sterile water

A basic preservation solution 
+ 1.0 × 104 CFU/mL FT05W

B basic preservation solution 
+ 1.0 × 105 CFU/mL FT05W

C basic preservation solution 
+ 1.0 × 106 CFU/mL FT05W

D basic preservation solution 
+ 1.0 × 107 CFU/mL FT05W

E basic preservation solution 
+ 1.0 × 108 CFU/mL FT05W



227

Horticultural Science (Prague), 52, 2025 (3): 224–236	 Original Paper

https://doi.org/10.17221/130/2023-HORTSCI

in a controlled environment with a consistent tem-
perature of  approximately 25  °C and a  relative hu-
midity between 60% and 80%. The chosen location 
ensured no  direct sunlight but allowed adequate 
ventilation and clarity. At  the later stage of  the ex-
periment (14 days), we calculated the number of sin-
gle colonies in the preservative solution. We also as-
sessed the longevity of cut flowers by recording their 
appearance and other morphological parameters 
at 8 a.m. each day. In addition, various physiological 
measures were conducted at 48-hour intervals until 
the flowers lost their decorative appeal.

Appearance quality and vase life. Changes 
in  the appearance of  cut flowers were recorded 
daily and included phenomena such as petal wilting 
and stem bending. The first vase day was recorded 
as day 0. The end of vase life was determined when 
more than 50% of the tongue petals had lost water, 
resulting in  wilting, bending, or  drooping of  the 
flower stalks or heads.

Maximum increase rate of  blossom diameter 
(IRD). The blossom diameter of the G. jamesonii was 
recorded daily with a calliper, and the average value 
was determined. IRD  (%) was calculated using the 
following formula:

IRD (%)= (Df –Di)/Di × 100 	 (1)

where: Df – final maximum diameter; Di – initial maxi-
mum diameter.

The change rate of  fresh weight (FWCR). The 
fresh weight (FW) of each flower is measured daily 
using an electronic scale, and the initial FW is  the 
average FW of  the flowers on the first day (day 0). 
The change in FW is then calculated using the fol-
lowing formula:

FWCR (%) = (FWt – FWi)/FWi × 100	 (2)

where: FWt – FW of cut flowers on the measurement 
day; FWi – initial FW of cut flowers.

Water balance (WB) value. WB value is  meas-
ured using the weighing method (Kong et al. 2021). 
The following formula is  used to  measure the WB 
value:

WB = WA – WL	 (3)

where: WA – water absorption; WL – water loss.

The anthrone-ethyl acetate method was used 
to  measure the soluble sugar  (SS) content (Jhan-
ji et  al. 2022). The soluble protein  (SP) content 
was measured using the Coomassie brilliant blue 
G-250 method proposed by Jhanji et al. (2022).

Determination of plant enzymatic activities. Fresh 
leaves (weighing 0.5  g) were collected and crushed 
with 2 mL of potassium phosphate buffer with a pH 
of  7.8. Afterwards, this supernatant was centrifuged 
(Hunan Xiangyi Laboratory Instrument Develop-
ment Co., Ltd., China) at 4 °C for 20 min at 1 000.0 × g. 
The  supernatant was further analysed for enzymatic 
activities. Superoxide dismutase (SOD) activity was 
quantified by the reduction of nitro blue tetrazolium 
(NBT). The detailed procedure has been reported 
previously by Sun et al. (2019). The guaiacol method 
proposed by Bestwick et al. (1998) was used to assess 
the peroxidase (POD) activity, and absorbance was re-
corded at a wavelength of 470 nm. To estimate catalase 
(CAT) activity in gerbera leaves, we have employed the 
procedure proposed by Chance and Maehly (1955).

Relative electrolyte leakage (REL). REL was es-
timated using the procedure developed by  Dhindsa 
and Matowe (1981), and the results were quantified 
as follows:

REL (%) = (EC1 – EC0)/(EC2 – EC0) × 100 	 (4)

where: EC1 – electrical conductivity value of the sample 
after specific treatment; EC0 – electrical conductivity 
value of the blank control; EC2 – electrical conductiv-
ity value of the sample after high-temperature boiling.

Malondialdehyde (MDA) content. MDA content 
was assessed using the thiobarbituric acid reaction 
procedure (Tiwari et al. 2010).

Colony culture and colony number determi-
nation. The preservation solutions were diluted 
in  equal proportions, and 0.2  mL of  the resulting 
mixture was uniformly spread on  beef paste pep-
tone medium. Each concentration was replicated 
3–5  times. The culture plates were sealed and in-
cubated at  a  constant temperature of  37  °C for 
18–24  hours. The growth of  the colonies was ob-
served periodically, and the number of colonies was 
recorded. The concentration of  the mother liquor 
(CFU/mL) was calculated using the formula:

CFU/mL = Cmean × dilution factor 5	 (5)

where: Cmean – mean number of colonies.
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Statistical Analysis. Data were subjected 
to  analysis of  variance (ANOVA) using SPSS ver-
sion  22.0  software. Data recorded as  percentages 
were transformed by  arcsine square root prior 
to analysis using ANOVA. Data are presented as the 
mean of three technical replicates ± SE (standard er-
ror). Means with the same letter do not significantly 
differ at P < 0.05 (Tukey’s HSD test).

RESULTS

Effect of  S. exfoliatus FT05W on  vase life and 
the increase rate of maximum blossom diameter 
on G. jamesonii L. cut-flowers. Different concen-
trations of  preservation solution in  combination 
with S.  exfoliatus FT05W have different effects 
on the vase life and blossom diameter of G.  jame-
sonii (Table 2). Treatment C significantly prolonged 
the vase life of  G.  jamesonii, reaching 18.67  days, 
which was 4 days longer than the control (CK). 
In addition, the vase life was significantly increased 
under D, B, E, and A treatments by 3.00, 2.66, 1.69, 
and 1.66 days longer in comparison with the con-
trol  (CK), respectively. Concurrently, treatments 
with S.  exfoliatus FT05W significantly augmented 
the maximum floral diameter rate, except for treat-
ment A, compared to  the control (CK). The most 
significant enhancement (177.95%) was observed 
in  treatment C. This was followed by  treatments 
D, B, E, and A, which increased by  122.31, 92.82, 
61.02, and 34.36%, respectively. Overall, treatment 
C showed the highest rate of increase in the maxi-
mum flower diameter.

Effect of  S. exfoliatus FT05W on  the appear-
ance quality of  G. jamesonii L. cut-flowers. 
On  the 7th  day post-bottle insertion, neither the 
treated flowers (A–E) nor the control cut flow-
ers (CK) showed any signs of wilted petals, droop-
ing flower heads, or bent stems (Figure 1). On  the 
8th day, the petals of the CK branches exhibited signs 
of  dehydration and wilting, leading to  noticeable 
changes in  the appearance and quality of  the cut 
flowers. By the 10th day after being placed in the bot-
tle, pronounced wilting of the flowers and bending 
of their stems was evident in all treatments, includ-
ing control (CK). The changes in treatments C and 
D were minor, resulting in  only minor water loss. 
By  day  14, two-thirds of  the tongue-shaped petals 
of  the cut flowers in  the CK group had undergone 
desiccation and subsequent wilting, which signifi-
cantly reduced their aesthetic appeal. In  contrast, 
the branches subjected to  treatment C remained 
healthy, with only slight dehydration of  the petals 
and preservation of their vibrant colour. Compared 
to all treatments, treatment C was the least affected 
by  flower wilting, followed by  treatment D. Treat-
ments A, B, and E showed more pronounced wilting, 
whereas the CK group was the most affected. This 
indicates that S. exfoliatus FT05W supports gerbera 
stalks, prevents flower heads from sagging, keeps 
cut flower stems straight, and significantly increases 
the shelf life and ornamental quality of cut flowers. 
The addition of  a  preservation solution containing 
1.0  ×  106  CFU/mL S. exfoliatus FT05W gave the 
most favourable result, as shown in Figure 1.

Effect of  S. exfoliatus FT05W on  fresh weight 
change rate of  G. jamesonii L. cut-flowers. 
As  shown in  Figure 2, there was an  initial increase 
in the rate of FW change across all the experimental 
groups, followed by a subsequent decrease. The rate 
of FW change for treatments CK, A, B, D, and E peaked 
3 days after bottle insertion, before showing a subse-
quent decline. In contrast, the rate of treatment C in-
creased significantly compared to that of CK, continu-
ing to rise until the 5th day before declining. At day 12, 
the rates of FW change in treatments CK through E 
decreased by 32.18%, 16.97%, 13.30%, 12.18%, 16.01%, 
and 16.96%, respectively, compared to  day  0. When 
ranked by rate of change, the treatments followed the 
order CK > A > E > D > B > C. Treatments C and B ex-
hibited the lowest rates of change, followed by treat-
ments D and E. Treatment A displayed a marginally 
higher rate of  change, whereas the highest rate was 
observed in the CK treatment.

Table 2. Effects of S. exfoliatus FT05W on vase life and 
maximum diameter of G. jamesonii. L. fresh-cut flowers

Treatment Vase life 
(days)

Bottle life 
extension 

(days)

Increase rate 
of maximum flower 

diameter (%)

CK (control) 14.67d 0.00 3.90c

A 16.33c 1.66 5.24c

B 17.33b 2.66 7.52b

C 18.67a 4.00 10.84a

D 17.67b 3.00 8.67b

E 16.31c 1.69 6.28c

For treatment detail (CK–E) see Table 1
a–dvalues with different lowercase letters indicate significant 
differences (P < 0.05)
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During the testing process, it  was observed that 
each S. exfoliatus FT05W treatment group per-
formed better than the control group in  each 
phase. After conducting further tests to determine 
the optimal concentration of  S. exfoliatus FT05W, 
we found that gerbera treated with a concentration 
of 1.0 × 106 CFU/mL FT05W had a higher FW com-
pared to  the other treatments. Therefore, we  con-
firmed that a  concentration of  1.0 × 106  CFU/mL 
of S. exfoliatus FT05W is most effective for extend-
ing the vase life of G. jamesonii. This concentration 
maximised water absorption during the initial stage 

of bottle insertion and minimised water loss in the 
later stages, thereby indicating its superior preserva-
tive effect.

Effect of  S. exfoliatus FT05W on  the water 
balance value of  G. jamesonii L. cut-flowers. 
Figure 3  shows that the water balance values for 
each treatment exhibited a  consistent downward 
trend throughout the experiment. On  day 12 after 
bottle insertion, the sum of  the water balance val-
ues for CK and treatments A, B, C, D, and E were 
–26.92, –9.61, –8.18, –0.13, –8.58 and –14.70, re-
spectively. The treatments can be  ranked based 

Figure 3. Effect of S. exfoliatus FT05W on the water bal-
ance value of G. jamesonii L. flowers
For treatment detail (CK–E) see Table 1

Figure 1. Effects of S. exfoliatus FT05W on the appearance quality of G. jamesonii L. fresh-cut flowers
For treatment detail (CK–E) see Table 1

Figure 2. Effects of S. exfoliatus FT05W on the fresh 
weight of cut G. jamesonii L. fresh-cut flowers
For treatment detail (CK–E) see Table 1
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on their water balance values in the following order: 
C > B > D > A > E > CK. Regarding the time need-
ed to  disturb the water balance, CK was negative 
on day 2 after bottle insertion; treatment E shifted 
to  negative on  day 4; treatments A, B, and D only 
on day 5; and treatment C remained stable through 
day 8. These results indicate that S.  exfoliatus 
FT05W is effective in maintaining the water balance 
of G. jamesonii L. cut flowers, thereby contributing 
to improved stem vigour.

Effect of S. exfoliatus FT05W on SS and SP con-
tent of  G. jamesonii L. fresh-cut flowers. Differ-
ent concentrations of S. exfoliatus FT05W enhanced 
SP and SS levels (Figure 4), compared to  the con-
trol (CK). Overall, the pattern of  increase in  these 
parameters was consistent, that is, the maximum 
increase in  both SP and SS content was observed 
under 1 × 106 CFU/mL S. exfoliatus FT05W, and SS 

content was significantly higher under C, D, and B 
treatments by 43.91%, 33.33%, and 28.19%, respec-
tively, compared to the control (CK). A similar pat-
tern was observed for the SP content. Treatment C 
significantly enhanced the SP content, which was 
49.56% higher than the control, followed by  treat-
ments D, B, and A.

Effect of  S. exfoliatus FT05W on  SOD, POD, 
and CAT activities of  G. jamesonii L. fresh-cut 
flowers. Relative to  the control, the application 
of  different concentrations of  S. exfoliatus FT05W 
enhanced the activities of  the antioxidant en-
zymes SOD, POD, and CAT in all treatments (Fig-
ure 5A–C). SOD activity was higher in the D, C, and 
B treatments by 52.22%, 43.89%, and 40.00%, respec-
tively, compared with the control (CK) (Figure 5A).

Similarly, POD activity significantly increased un-
der different concentrations of S. exfoliatus FT05W 
(Figure 5B). However, the highest increase in POD 
was observed under treatment C (1 × 106 CFU/mL), 
which was 83.13% higher than the control (CK), fol-
lowed by treatment B (44.94%) and D (25.77%). Sim-
ilarly, CAT activity was also enhanced by S. exfolia-
tus FT05W treatment. Compared with the control, 
its activity was enhanced by 67.72% in treatment C. 
It increased by 58.53%, 49.68%, and 46.30% in D, A, 
and B, respectively (Figure 5C).

Impact of  S. exfoliatus FT05W on  microbial 
colonisation in  vase solutions for G. jamesonii  L. 
fresh-cut flowers. The data presented in  Figure  5D 
showed that all Streptomyces treatments effectively 
inhibited microbial growth. Among them, treat-
ment C showed the lowest number of  microbes 
in the vase liquid with a count of 1.7 × 106 CFU/mL, 
which is  87.02% lower than that of  CK. Following 
this were treatments A, B, D, and E with microbial 
counts of  6.6  ×  106  CFU/mL, 4.1 × 106 CFU/mL, 
5.4 × 106 CFU/mL and 7.6 × 106 CFU/mL. This cor-
responds to  reductions of  49.62%, 68.70%, 58.78%, 
and 41.98%, respectively, compared to  the control 
(CK). The control (CK) had the highest bacterial 
count in the vase liquid, reaching 13.1 × 106 CFU/mL. 
This indicates that the addition of a spore suspension 
of S. exfoliatus FT05W to the vase liquid can effective-
ly inhibit microbial growth. The most pronounced an-
timicrobial effect was observed at 1.0 × 106 CFU/mL.

S. exfoliatus FT05W reduced oxidative damage 
in the content of G. jamesonii L. fresh-cut flow-
ers. The basic preservation solution + sterile water 
exhibited an increase in lipid peroxidation and REL 
(Figure 6). In contrast, S. exfoliatus FT05W amelio-

Figure 4. Effects of  S. exfoliatus FT05W treatment 
on (A) soluble protein (SP) and (B) soluble sugar (SS) 
contents of G. jamesonii L. fresh-cut flowers
For treatment detail (CK–E) see Table 1
a–ddifferent lowercase letters indicate significant differences 
(P < 0.05)
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rated oxidative stress by reducing MDA and REL ac-
cumulation. The highest reduction in MDA and REL 
was observed under treatment C, suggesting that 
control plants underwent a robust peroxidation pro-
cess, which led to increased cell membrane damage 

and significant petal ageing. Treatment with S. exfo-
liatus FT05W mitigated the increase in  MDA and 
REL content in the cut flowers, effectively delaying 
the ageing process of G. jamesonii L. fresh-cut flow-
ers, with treatment C being the most effective.

Figure 5. Effects of S. exfoliatus FT05W on activities of (A) superoxide dismutase (SOD), (B) peroxidase (POD), 
(C) catalase (CAT) and (D) the number of colonies in bottle insertion (CFU) of G. jamesonii L. fresh-cut flowers
For treatment detail (CK–E) see Table 1
a–fdifferent lowercase letters indicate significant differences (P < 0.05)

Figure 6. Effect of S. exfoliatus FT05W on (A) malondialdehyde (MDA) and (B) relative electrolyte leakage (REL) 
of G. jamesonii L. fresh-cut flowers
For treatment detail (CK–E) see Table 1
a–edifferent lowercase letters indicate significant differences (P < 0.05)
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DISCUSSION

In the existing literature, a  connection has been 
found between the wilting of the petals of cut flow-
ers and the presence of bacteria either on  the sur-
face of the cut stems or in the vase solution (Li et al. 
2012; Hongbo et  al. 2017). Nevertheless, several 
studies have reported mixed results regarding the 
effects of  introducing an external bacterial suspen-
sion at  a  concentration of  less than 108 CFU/mL 
on the lifespan of cut flowers (van Doorn et al. 1991; 
van Doorn et  al. 1995). Some studies found that 
this solution had no significant effect or slightly re-
duced the flower vase life (van Doorn et  al. 1991; 
van Doorn et al. 1995). Conversely, Ratnayake et al. 
(2012) and Williamson and Joyce (2013) reported 
that high bacterial concentrations had no  visible 
effect on  the vase life of  Boronia heterophylla and 
Acacia holosericea cut flowers. These differences 
in results could be due to the different types of bac-
teria used in  the respective experiments. Detailed 
studies on bacterial growth have shown that bacte-
rial shortening of vase life depends on  the specific 
type of bacteria present in the vase solution (Jacob, 
Kim 2010; Carlson et  al. 2015). However, in  the 
present study, G.  jasmonii treated with the vase 
solution of  S. exfoliatus FT05W significantly in-
creased flower quality parameters such as vase life 
days, bottle insertion days, blossom diameter, and 
rate of  change of  FW  compared with the control, 
and the highest increase in  these parameters was 
observed under treatment C (S. exfoliatus FT05W 
1.0 × 106 CFU/mL). The prolonged vase life of G. jas-
monii is attributed to a positive impact on maintain-
ing optimal water balance, which is evident in flower 
diameter, bottle insertion days, water balance, and 
rate of change in FW. Furthermore, maintaining wa-
ter homeostasis throughout the flower growth pe-
riod has been important in  extending the vase life 
of  flowers. In  contrast, imbalances in  water regu-
lation have been seen to  accelerate the senescence 
process (Hassan, Ali 2014). Biocontrol bacteria of-
ten exhibit their beneficial effects by  inhibiting the 
growth and propagation of phytopathogens through 
several mechanisms. These mechanisms include 
producing toxic compounds that harm phytopatho-
gens, the competitive acquisition of  vital nutrients 
and colonisation sites, and the induction of defence 
response-related genes (Gao et  al. 2012; Carlson 
et  al. 2015). Similarly, Streptomyces  sp. is  a  genus 
of bacteria known for its diverse metabolic capabili-

ties, including the production of  various bioactive 
compounds. Many strains of Streptomyces sp. have 
been found to possess antimicrobial properties and 
are capable of  producing secondary metabolites 
that inhibit the growth of microorganisms, and ex-
hibit oxidase-negative and catalase-positive proper-
ties (Alam et  al. 2022). Streptomyces  sp. may have 
the potential to  eliminate microorganisms present 
in the vase solution that could accelerate the deteri-
oration of flowers. By inhibiting the growth of these 
microorganisms, the vase solution remains cleaner 
and more suitable for maintaining the freshness and 
longevity of the flowers (Jowkar et al. 2017; Abdel-
Rahman 2019). Similar results were obtained in our 
study, and the vase solution of treatment C signifi-
cantly reduced the number of  bacteria compared 
to control (CK).

Furthermore, an  alternative explanation could 
be  that the absence of  oxidase activity contributes 
to reducing reactive oxygen species (ROS) produc-
tion induced by  oxidases. Furthermore, the cata-
lase-positive property of  this substance enhances 
its antioxidant activity, facilitating the efficient re-
moval of  ROS that could potentially damage plant 
cell membranes (Naing et al. 2017). Our results are 
in  line with the previous study conducted by Carl-
son et  al. (2015), which observed that two bacte-
rial strains, Pseudomonas fulva and Escherichia 
coli, commonly referred to  as  biocontrol bacteria, 
prolong the vase life of  cut Zinnia elegans flow-
ers. Similarly, the blossom diameter increased due 
to the vase solution of S. exfoliatus FT05W. The sig-
nificant factor contributing to the decrease in water 
uptake, which leads to xylem blockage and reduces 
the water balance, is  the continued growth of  mi-
croorganisms in the chemical preservation solution, 
as previously described by Nguyen and Lim (2021). 
In addition, the proliferation of bacteria in vase solu-
tions leads to blockage of the vascular system. The 
presence of occlusion hinders the process of water 
balance  absorption, ultimately resulting in  short-
ened flower vase life, smaller blossom diameter, and 
a  lower rate of change in FW (Hongbo et al. 2017; 
Akhtar et  al. 2021). Conversely, the vase solution 
of S. exfoliatus FT05W, with its antimicrobial char-
acteristics, led to an increase in the diameter of the 
gerbera blossom. The antimicrobial properties ex-
hibited by  Streptomyces have been observed to  ef-
fectively inhibit bacterial growth, thereby promoting 
water absorption and increasing blossom diameter. 
This effect is clearly demonstrated in Table 5A. Fur-
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thermore, basic fresh-keeping solution and sterile 
water (CK) treatment enhanced ROS production, 
which is  directly related to  the overproduction 
of lipid peroxidation and electrolyte leakage (Ghani 
et al., 2022a; Qi et al. 2023).

The primary method of  preserving cut flowers 
is  to  provide the necessary nutrients via a  fresh-
keeping solution to  preserve freshness, maintain 
water balance, and inhibit the physiological chang-
es of  cut flower ageing, as  well as  extend the life 
of  fresh-cut flowers and improve their ornamental 
quality (Put 1990; Elhindi 2012; Perik et  al. 2012). 
A  major factor that contributes to  the ageing pro-
cess of fresh-cut flowers is the proliferation of bacte-
ria in the fresh-keeping liquid. This bacterial growth 
results in the closure of the flower’s vascular system, 
subsequently inducing water stress (van Meeteren, 
van Gelder 1999).

When plants are exposed to various biological and 
abiotic stresses, they generate a significant amount 
of ROS in their cells. These ROS can disrupt the dy-
namic balance of the cell, hinder the normal physi-
ological processes of plants, and lead to cell death. 
The increase in REL and MDA in cells is one of the 
first symptoms of destabilising these structures. Var-
ious stress conditions produce ROS and lead to the 
peroxidation of membrane lipids. Under such condi-
tions, the amounts of MDA as an end product of ox-
idation increase, indicating membrane permeability 
and disruption. To  counteract excessive ROS pro-
duction, the plant activates the antioxidant system, 
which protects cells from oxidative stress caused 
by pathogens and water deficiency. This protection 
helps prevent senescence and cell death (Zhou et al. 
2021; Ghani et al. 2022b; Ghani et al. 2023).

In the present study, the application of Streptomy-
ces FT05W vase solution inhibited the MDA level, 
known as the end product of lipid peroxidation (Mill-
er et  al. 2010) and REL level. The results indicated 
that 1.0 × 106  CFU/mL FT05W vase solution ex-
hibited significantly lower levels of MDA compared 
to CK (basic fresh-keeping solution + sterile water); 
this may be  due to  its antimicrobial properties and 
the activation of the antioxidant system, as supported 
by the higher activities of antioxidant enzymes such 
as  CAT, POD, and SOD in  gerbera cut flower. The 
augmentation of  the antioxidant capacity of  the cut 
flowers resulted in a reduction of ROS and the conse-
quent damage to membrane lipids. This subsequently 
led to a drop in REL and MDA levels in cut flowers. 
Similarly, Naveed et  al. (2022) also observed de-

creased MDA levels and REL in meri gold cut flowers 
following the treatment of endophytic bacteria.

It is  noted that microbial invasion in  the fresh-
keeping solution is  one of  the main factors deter-
mining the vase life and the quality of the ornamen-
tal plant. It  is  an  important method for extending 
vase life by  inhibiting the proliferation and growth 
of microorganisms at the base of the flower stalk and 
reducing the blockage of  metabolites at  the flower 
stalk vessel (Gururani et  al. 2023). In  this study, 
it  was found that the number of  colonies in  the 
bottled solution of  all S. exfoliatus FT05W-treated 
groups was significantly lower than that of the con-
trol group, and the number of colonies in  the bot-
tled solution of treatment C was lowest, which was 
reduced by 87.02% compared to the control group. 
The results suggest that S. exfoliatus FT05W es-
tablishes dominance through effective competition 
for nutrients and growth space, thereby display-
ing antagonistic effects. Consequently, S. exfoliatus 
FT05W showcases a  pronounced antibacterial ef-
fect, effectively suppressing microbial propagation 
and thereby prolonging the vase life of gerbera cut 
flowers. Regrettably, we did not specifically differen-
tiate or quantify the beneficial and harmful micro-
organisms present in the preservative solution after 
adding S. exfoliatus FT05W. In future work, we plan 
to  employ techniques such as  microbial diversity 
analysis, metagenomic sequencing, and fluorescent 
molecular markers to  address this issue, providing 
insights into the mechanisms related to the micro-
bial interaction following FT05W addition.

CONCLUSION

The findings of a recent study highlight that adding 
bacteria S. exfoliatus FT05W to  the vase solution, 
particularly 1.0 × 106 CFU/mL FT05W, has a posi-
tive impact on G. jasmonii and keeps the quality and 
extends the longevity of  G. jasmonii. The addition 
of spore suspension of bacteria S. exfoliatus FT05W, 
particularly the vase solution with a  concentration 
of 1.0 × 106 CFU/mL stem end cut surface. Further-
more, the positive impact was observed through 
augmentation of  the antioxidant system, which re-
duced lipid peroxidation, REL, which reduced bac-
teria blockage of  xylem, hence maintaining water 
balance in the plant and increased maximum flow-
er diameter and thus prolonged gerbera vase life. 
A concentration of 1.0 × 106 CFU/mL of S. exfoliatus 
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FT05W signif﻿﻿icantly reduced the number of bacte-
ria in  the vase solution, with an underlying poten-
tial of  integrating S. exfoliatus FT05W to promote 
sustainable and healthier flower cultivation while 
minimising environmental problems. However, ad-
ditional research is needed to investigate the deeper 
mechanisms, including physiological and biochemi-
cal reactions and molecular biological mechanisms. 
These further studies will help provide a solid the-
oretical basis for the application of  S.  exfoliatus 
FT05W in the floriculture field to increase the vase 
life of other cut flowers.
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